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Optimal Pricing for Linear-Quadratic Games
With Nonlinear Interaction Between Agents

Jiamin Cai, Chenyue Zhang

Abstract—This letter studies a class of network games
with linear-quadratic payoffs and externalities exerted
through a strictly concave interaction function. This class
of game is motivated by the diminishing marginal effects
with peer influences. We analyze the optimal pricing strat-
egy for this class of network game. First, we prove the
existence of a unique Nash Equilibrium (NE). Second, we
study the optimal pricing strategy of a monopolist selling
a divisible good to agents. We show that the optimal
pricing strategy, found by solving a bilevel optimization
problem, is strictly better when the monopolist knows the
network structure as opposed to the best strategy agnostic
to network structure. Numerical experiments demonstrate
that in most cases, the maximum revenue is achieved
with an asymmetric network. These results contrast with
the previously studied case of linear interaction function,
where a network-independent price is proven optimal with
symmetric networks. Lastly, we describe an efficient algo-
rithm for finding the optimal pricing strategy.

Index Terms—Network analysis and control,
theory, optimization.

game

[. INTRODUCTION

KEY feature of social networks is that an agent’s

action can influence and be influenced by neighbors’
actions. To analyze the behavior of social networks, many
works [1], [2], [3] have considered studying network games as
a general framework to capture the interaction among agents
and analyze the latter’s actions at equilibrium. Among others,
the linear-quadratic game setting is popular [4], [5], [6] as it
captures essential features of social networks while providing
useful analysis.

Pricing or intervention strategy describes the decisions,
made by an independent entity, to modulate the agents’
actions [7], [8], [9], [10], [11] while achieving a certain goal
depending on the agents’ equilibrium actions. As an example,
in social networks, monopolist sets prices for agents who
adjust their consumption of a good while the monopolist
maximizes his/her revenue from selling the good. However,
the optimal pricing problem is a bilevel optimization problem
which can be difficult to analyze. Only few results are found
in the literature, e.g., [4], [5], [9] analyzed the optimal pricing
strategy for linear-quadratic games and drew connections
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between the optimal prices and network’s centrality, [7]
studied the effects of general strategic complementary, [12]
studied the inverse problem of social network from pricing
experiments.

This letter is concerned with the optimal pricing problem
where a monopolist seeks to maximize his/her total revenue
made from selling a divisible good to the agents, where
the agents are incentivized to buy the good through pric-
ing in a linear quadratic game. We focus on a strategic
complementary setting [13] such that an agent is positively
influenced by peers through a strictly concave interaction
function. This is unlike the model of linear interaction
studied in [4], [5] as we are motivated by the diminishing
marginal effect of peers [14], e.g., in investment problems as
modeled by [2].

Prior works have studied network games with various forms
of nonlinear interaction among agents. Many of these works
have shown the uniqueness of Nash Equilibrium (NE) for
the game, e.g., [13], [15] considered concave function on
the aggregated influences and extended the criteria for the
unique NE to exist as well as studying the property of
NE, [16] focused on linear best response with nonlinear social
warfare, [17], [18] considered the equilibrium in multiplex
networks. These works are related to studies on network
aggregative games [19], [20], where distributed algorithms for
computing the NE are in [21], [22], [23]. For intervention
strategy, the closest work to ours is [7], which shows that
the targeting strategy optimal to an objective of aggregative
action is affected by concavity/convexity of reaction function.
Our work is also related to studies on Stackelberg equilib-
rium [24]. Recent works have focused on the computational
aspects [25], [26].

Motivated by the above works, we study the effects on the
optimal pricing problem caused by the nonlinear interaction
function that describes the diminishing marginal phenomena.
We provide a few new analytical results:

« When given a pricing strategy, we first prove a sufficient
condition for the existence of unique NE. Our condi-
tion is characterized by the Lipschitzness of interaction
function.

o For optimal pricing problem, we prove that the
optimal total revenue is strictly better than the rev-
enue from a network agnostic strategy found without
network information. Importantly, we bound the price of
information (Pol), defined as the ratio between the total
revenues made by the optimal and network agnostic strat-
egy. We show that the Pol increases with the curvature
of interaction function.

o We show that the optimal pricing problem is equivalent
to a strongly concave optimization problem through
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reparameterizing the latter by the NE. The latter leads to

an efficient algorithm for calculating the optimal prices.
In [5], it was shown that the optimal pricing strategy with
linear interaction is independent of the network weights when
the latter is symmetric. With strictly concave interaction, we
show that the latter conclusion is not valid. Our results suggest
that the price of information (Pol) obeys a nuanced structure
in the nonlinear interaction setting.

1. NETWORK GAME & OPTIMAL PRICING

Consider a society consisting of n agents, who are connected
through a social network represented by the weighted directed
graph G = (V,E,G) with V = {1,...,n}, £ €V x V without
self-loops. The network is further endowed with a weighted
adjacency matrix G € R, For any (j, i) € &, the (i, j)th
element of G satisfies G;; > 0 and the latter quantifies the
influence strength of agent i received from agent j. If (j, i) ¢ &,
then G;; = 0. Note that G; =0 for i € V.

For each i € V), agent i decides on an action x; € R.
For example, in the context of a consumer social network,
this action corresponds to the consumption level of a divisible
good. We focus on games with quadratic payoffs such that
x; is affected by two sources of externalities. The first one is
an agent-specific price, p; € R, decided by a monopolist (can
be negative). The second one is due to peer influences where
an increase in the neighbors’ action leads to a positive effect
on x;, i.e., strategic complements [1], [13]. Formally, the latter
effects are described by aggregating the peers’ actions exerted
through a possibly nonlinear interaction function! f : R, —
Ry, yielding 1 Gyf (x)).

Combining the effects of externalities above leads to the
following linear-quadratic payoff in x;:

n
ui(xi, X_j; pi) = Zszf(Xj) +ai—pi |xi—bixp. (1)
=1

For agent i, a; > 0 is the marginal incentive parameter and
b; > 0 is a scaling parameter related to f(-). We have defined
the shorthand notation x_; as the vector x = (xq,...,X;)
whose ith element x; is removed.

In the case when f(x) = x, previous works such as [4], [5]
have studied the linear quadratic game. We focus on the sce-
nario when f is nonlinear (and in particular, strictly concave).
The latter models the situation when the peer influences has
a diminishing marginal effect which inhibits vigorous actions,
see [2], [14], [20]. To this regard, similar payoff functions
to (1) have been studied in [7], [15] which studied a similar
case to ours when the interaction function is applied on
the aggregated x;, i.e., f(Z}'Z1 Gijxj), and in [2], [20] whose
general framework includes non linear quadratic games.

Denote the vectors a = (ay,...,ay), b = (by,...,by).
Given p = (p1,...,pn), we define a linear-quadratic game
by Game(a, b, G, f; p) whose payoff function is given in (1).
We define the Nash Equilibrium (NE) of the game as a set of
actions, xNE — (xa\‘E, . ,x,';'E), satisfying:

xz\lE € arg max u,(x,;xﬂ'iz;pi), VieV, 2)
.XI'ER+

IWe remark that it is easy to extend our analysis to scenarios when the
interaction function is agent dependent.

i.e., when none of the agent has the intention to change his/her
action. In Section III-A, we will show that for any given price
vector, the NE is well defined under mild conditions.

In this letter, we analyze the optimal pricing problem for
the linear quadratic game (2). The optimal pricing problem
involves the monopolist (as leader) who maximizes his/her
total revenue by setting agent-specific prices, and the agents
(as followers) whose actions are determined as the NE of
Game(a, b, G, f; p) given the prices set. As the total revenue
is decided by the actions of agents and the prices set for the
agents, this leads to a bilevel optimization problem:

max pTxNE s.t. xVE satisfies (2) with p, 3)

p,xNEER"

where xNE in (2) is assumed to be unique.

In the context of consumer social networks, solving (3) gives
a pricing strategy which maximizes the revenue made by the
monopolist. The case of f(x) = x has been studied in [5], and
the case with nonlinear function applied on aggregated actions
is studied in [7] with a different objective of 1TxNE,

I11. MAIN RESULTS

Our analysis on (3) is developed via two steps. First, we
prove a sufficient condition for the existence of a unique NE.
Second, we derive properties on the optimal pricing problem
and compare the solution with benchmark strategies.

A. Nash Equilibrium

As a pre-requisite for tackling (3), we shall study cases
when the NE is well-defined. From (2), the action vector xNE
is an NE if and only if for any i € V,

27:1 G,}f<XJNE> + a; — pji
2b; ’

“

In other words, xNE is the fixed point of the nonlinear map
x — T(x) = [T;(x)]’_,. We require the conditions:
Assumption 1: The following holds:
1) The interaction function f is a-Lipschitz, i.e., for any
x,y € Ry, it holds |f(x) —f()| < a|x — y|.

2) For any i€V, it holds 2b; > a Y\ Gy

Note that Assumption 1-1) is satisfied by f which has a
bounded derivative over R . On the other hand, Assumption 1-
2) requires the curvature parameter of each agent to overcome
their own weighted in-degree, scaled by the Lipschitz constant
of f. Our first result gives a sufficient condition for the
existence and uniqueness of NE,

Lemma 1: Under Assumption 1, Eq. (4) has a unique fixed
point. As such, Game(a, b, G, f; p) has a unique NE.

See Appendix A for the proof. When f(x) = x, we have
o = 1 and our result recovers [5, Th. 1]. The key difference
lies in the case when o # 1, where the condition in
Assumption 1-2) will be affected by the maximum derivative
of f.

Observe that Game(a, b, G, f;p) is subject to scaling
ambiguity. E.g., the interaction function can be shifted or
scaled arbitrarily. To this regard, it is better to work with a
‘normalized’ instance of the linear quadratic game. Two games
are equivalent if their NEs coincide. With a direct substitution
of variables, we observe that:

xE\IE = Ti(xNE) = max1 0,
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Corollary 1: For any game Game(a,b, G, f;p) that sat-
isfies  Assumption 1, there exists an equivalent game
Game(a, b, G, f; p) with the parameters

M, G = oG.

a=a+f0)GI, b=b, f(x) =
Moreover, we have f(O) = O,f(x) < x for any x € Ry.

For the rest of this letter, we will study the linear quadratic
games with a normalized interaction function such that f(x)
is 1-Lischitz and satisfies f(0) = 0, f(x) < x for any x € R,.
This is without loss of generality due to Corollary 1. As a
concrete example, one may consider f(x) = In(1 + x). From
now on, we shall denote xNE(p) as the NE action vector to
Game(a, b, G, f; p) with the normalized interaction function.

B. Optimal Pricing

We present algorithmic and analytical results on the bilevel
optimization problem (3). Define the diagonal matrix B =
2Diag(b1, ..., by) and consider the following set of assump-
tions that have been strengthened from Assumption 1:

Assumption 2: The interaction function f is 1-Lipschitz,
non-decreasing, twice differentiable, concave on R* and
satisfies f(0) = 0, f(x) < x for any x € R*.

Assumption 3: There exists p,p’ > 0 such that the
matrices B — %(G +G") — pI, B—G — p'I are diagonally
dominant.”

1) Efficient Computation: To derive an efficient algorithm
for solving (3), our approach consists of showing that the
optimal pricing problem is equivalent to a strongly concave
optimization problem on the action vector x.

Our approach hinges on establishing the correspondence
between an NE and a price vector. However, the nonlinearity
of the max{0, -} map in (4) could hinder our development.
Fortunately, we show that at the optimal pricing strategy, the
effect of the max{0, -} map can be ignored:

Lemma 2: Let p* be an optimal solution to (3). Then the
NE to Game(a, b, G, f; p*) must satisfy xNE(p*) > 0.

The proof is modified from [5, Lemma 7] by adapting the
latter to f(-). Together with (4), Lemma 2 implies that at the
optimal price p*, the corresponding NE must satisfy:

MNEpH) =B (Gf(xNE(p*)) +a—p*) >0, 5)

where we have defined f(x) = (f(x1),...,f(x,)) € R™ This
suggests us to rewrite the objective function p "x in the bilevel
optimization problem (3) by substituting p = a + Gf(x) — Bx.
We consider:

J(x) =x"(a + Gf(x) — Bx), (6)

By Lemma 2, J (xNE(p*)) is the optimal total revenue achieved
by solving (3). We further note that

Proposition 1: Under Assumptions 2 and 3, the function
J(x) is strongly concave with modulus 2p, and xNE(p*)
satisfying (5) is the unique maximizer of J(x) over x € R}

Lemma 2 and Proposition 1 imply that (3) is equivalent to
a single-level optimization problem maxycgrr J(x). A standard
procedure is to consider a projected gradient (PG) method for
solving (3): fort =0, 1, ...

x = max{0,x" + y VJ(x')}, @)

2A e RN g diagonally dominant if |A;;| > Zj;&i |A;j| for all i.

where ¥ > 0 is a step size. Assume in addition that f”(x) >
—M, it can be shown that VJ(x) is v-Lipschitz, see (25).
Setting ¥y = 1/v guarantees that (7) converge to the optimal
action vector x* geometrically [27, Th. 10.29]. The optimal
prices can be found by p* = a + Gf(x*) — Bx™.

2) Network Externality & Price Discrimination: To simplify
notation, let p* be an optimal pricing vector and x* := xNE (p*)
be the NE action vector. We aim to compare p* to a network
agnostic strategy where network externalities are ignored by
the monopolist. In this case, the monopolist models the payoff
function as (1) without Y 7 ; Gyf (x;). The optimal pricing
problem will be reduced to max,cpn Z:’z 1 ZP_I;,- max{0, a; — pi},
whose optimal solution is given by p, := a/2. We further
denote xog = xNE(pO) as the corresponding NE. To this end,
we are interested in the price of information (Pol):

Pol := J(x*)/J (x0), ¥

which is the ratio between the optimal revenue and the revenue
with network agnostic strategy.

The first result is to show that in general, the above network
agnostic pricing strategy is strictly suboptimal:

Theorem 1: Under Assumptions 2 and 3. If f is strictly
concave, then it holds

Jx) = (@) p* > @x0) po = Jxo). 9)

Furthermore, if there exists M > 0 such that " (x) > —M for
any x > 0, then the Pol satisfies

(aTB—lc;h(%B—la))2

J(x*) 4p
. _1>-= , (10
J(x0) 2 (aT(B —G)~la)||(B - G) la|? (10)
where h(x) = f(x) — Dr(x)x with Dp(x) =
Diag(f/(XI), Y 1f/(-xl’l))’ and
v = |14b + <G+GT)1 +MGTE™ |, (11)
—1
where X™* = max %(B -G a, %(B — %) a} is

taken with the element-wise maximum.

The proof is established by applying Taylor’s theorem on
J(xp) and relate it to ||x* — x¢l|; see Appendix C. Our result
shows that for strictly concave interaction function, it is neces-
sary for the monopolist to explore network knowledge to find
the maximum total revenue through pricing discrimination.

We first compare our result to that of [5] which studied
the case of f(x) = x, i.e., the interaction function is linear.
Corollary 1 therein shows that when G = G, then the
network agnostic pricing strategy p, = a/2 is optimal. In the
special case with uniform incentive a = al, there is no need
for pricing discrimination for symmetric network. Note that
this is compatible with our bound on Pol in (10) as h(x) = 0
when f(x) = x. On the other hand, we have h(x) > 0 when f
is strictly concave. For the latter case, the lower bound in (10)
will be strictly positive. This implies that regardless of whether
G = G' or not, it is strictly beneficial for the monopolist to
explore a network externality dependent pricing strategy.

Furthermore, the lower bound for Pol in (10) quantifies the
minimum gain in total revenue with the optimal pricing vector
p* in the presence of network information. We first notice
that this bound (i) increases with p in Assumption 3, and (ii)
decreases with the curvature of f through M. Furthermore,
from the right hand side of (10), the bound roughly behaves
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as a concave function of G'B™la, sugigesting a complex
interaction between the incentive level (B~ a) and the network
structure (G). We will further study this behavior in Section IV
using numerical experiments.

The second scenario is to consider a case when the monop-
olist may process the knowledge of the network structure
but is unable to offer price discrimination due to the cost
of implementation. We aim to quantify the value of network
structure even without the ability to charge prices differently
for different agents. To gain insights, we focus on a ‘symmet-
ric’ game Game(a, b, G, f; p) satisfying

a=al, b=>0b1, G1=3l. (12)

Corollary 2: Under Assumptions 2, 3. Suppose that the
game satisfies (12). Given a uniform price strategy pl, the NE
action vector must be uniform, i.e., xNE([JI) =xI, x> 0.

The corollary is obtained by showing that x1 is an NE,
followed by its uniqueness property. The corollary implies that
when the optimal pricing problem is restricted to finding a
uniform price, the bilevel optimization problem is reduced into
a one dimensional optimization maxz>oJ(x1) [cf. (6)].

Let p* to be the optimal uniform price and x*1 be the
uniform NE action which satisfies ¥* = argmax;.(J(x1).
Similar to the previous scenario, the uniform network agnostic
optimal price is given by pp = a/2. Denote xpl as the
uniform NE action for the latter. Using a similar proof idea
as Theorem 1, we bound the gain of p* over py:

Theorem 2: Under Assumptions 2, 3. Suppose that the
game satisfies (12). Let h(x) == f(x) — f'(x)x, it holds

—x - - =N\ 2
o= (-5
J(xol) a 2b 4b

Obtaining X* and thus p* requires the knowledge of the
network externality parameters g, a, b, f(-). Notice that
the detailed structure of G is not required. Meanwhile, the
benchmark price po requires only a. For strictly concave
f(), we have h(x) > 0 for any x > 0. As such, simi-
lar to (10), the above continues to show that the optimal
uniform price informed by network externalities is a strictly
better pricing strategy than the network agnostic strategy,
regardless of whether G is symmetric or not. Finally, we
note that the left hand side of (13) is a lower bound to
the Pol.

(13)

IV. NUMERICAL EXPERIMENT

This section presents numerical experiments on how
network information will influence the total revenue in optimal
pricing and validate the results in Section III.

A. Network Symmetricity

Our first set of experiments examines the ratio jg?;,

i.e., the total revenues under network agnostic pricing strategy
po [cf. Section III-B2] and the optimal pricing strategy p*
solving (3). We compare this ratio of revenues when different
interaction functions f(-) are used in (1): the linear function
f(x) = x, or the normalized strictly concave functions fj (x) =
In(x + 1), f2(x) = 0.1In(1 + 10x).

Star Graph: Consider a star graph topology described by
the asymmetric matrix GS®" with Gl_sjtar =1ifi=1,j#i

otherwise Gl_sjtar = 0 such that agent 1 is the ‘central’ agent

14
1
§ \j, 0.8 09
I 1
T
3
< 06 0.8 |
— linear interaction
— fi(z)
— fa(z)
0.4 - — 0.7 — —
0 0.5 1 0 0.5 1
« «
Fig. 1. (Left) Star graph with a = 1; b = 1; n = 10. Maximum Pol

achieved by f;() is gdgg at @ = 0.41, f(-) is gags at @ = 0.32; (Right)
PA graph with a = 1;'b = 2; n = 100. Maximum Pol achieved by () is
0.9199 ata =0.44, f()) is ﬁ ato = 0.32.

1072 5
— J@) E | E— (C L)
J(x0) ] J(@ol)
—— Theorem 1 -+ —— Theorem 2
1073 4 1072 4
. [\ B
S10-4 4 10 i
10—° E
107° E
7\ 106 “—— T T
0 0.5 1 0 02 04 06 08 1
g g
Fig. 2. (Left) Comparing the actual ratio j((%;; — 1 to the lower bound in
Theorem 1 with a = 2, b = g; (Right) Comparing the ratio with uniform
prices jgoR — 1 to the lower bound in Theorem 2 witha=2,b = 1.

in the network. For the network game, we use the weighted
adjacency matrix G = «G%® + (1 —a)(G%®") T parameterized
by « € [0, 1]. Increasing « trades off the impact level of the
central agent has on her neighbors and the impact level of her
neighbors on the central agent. At o« = 0.5, the directed impact
levels are balanced and G = G' is a symmetric adjacency
matrix. With n = 10 agents, Fig. 1 (left) shows the inverse
Pol against o € [0, 1]. We first notice that unlike the case of
linear interaction which achieves ﬁ’;?; =1at o = 0.5, the
two cases of nonlinear interaction functions are skewed where
the maximum ratios of revenues are achieved at o < 0.5,
and the ratios are strictly less than 1. These corroborate
Theorem 1.

Preferential Attachment (PA) Graph: We consider the
network specified by a PA graph with n = 100 agents. We first
generate an upper triangular matrix GP2 using the procedure
in [5, Sec. 5]. Similar to the previous example, we use the
weighted adjacency matrix G = aGP? + (1 — a)(GP?)T.
Similar to our findings in the star graph example, Fig. 1 also
shows that the maximum inverse Pol of revenues is achieved
at a < 0.5 for nonlinear interaction.

For both examples, the Pols under concave interaction
function is reduced at the extreme cases (¢ — O or
o — 1) when compared to when f(x) = x. We note
that this is supported by a related observation in [7] that
shows the targeting strategy is less effective with concave
interaction.
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B. Lower Bounds of Network Information Gap 977 = Gif (v)) + Gif (x). i # . (15)
Our second set of experiments evaluates the tightness of 9
the lower bounds established in Theorems 1, 2. We focus Observe that as f is strictly concave
on the case with the interaction function fj(x) = In(1 + x).
With the parameter g > 0, the social network is described by a 92J Y
ring graph such that Gr " = gif i = (j+ 1) mod n; otherwise 952 > 4bi — Z Gjixif " (xi) = 4bi. (16)
i J

G — 0. We con51der adjusting the interaction strength g

ij
from O to 1 and compare jgﬁog — 1 to the lower bounds proven

in Theorems 1, 2. We also fix the number of agents at n = 100.

Fig. 2 (left) compares the bound in Theorem 1 under the
general setting where price discrimination is allowed. We
observe that our theoretical bound captures the concave nature
of the gap 7 J( ) — 1 w.r.t. g. However, we also observe that the
bound is 1n general loose. Similarly, Fig. 2 (right) compares
the bound in Theorem 2 which is specialized to the uniform
pricing strategy setting. Here, we compare ﬁ;—;}; — 1 to the
theoretical bound in the theorem. The figure shows that the
proposed bound is tighter in this case.

V. CONCLUSION

We considered the optimal pricing problem for linear
quadratic game with externalities exerted through strictly
concave interaction. We showed that it is necessary for the
monopolist to use knowledge on network structure in finding
the optimal pricing strategy. It contrasts with the linear
interaction case, where the network structure knowledge can
be unnecessary in symmetric network. Future works include
extension to general games with other forms of nonlinearity.

APPENDIX

The proofs for Corollaries 1, 2, Lemma 2, Theorem 2
are omitted due to space limit. They can be found online at
https://arxiv.org/abs/2405.01047.

A. Proof of Lemma 1
Proof: We have
2
" (&L Gilf () — £ (s
17 — Tl < 3 [ 3 Gal) ~F)

i=1 \ j=1 2bi

< 052 Z Z Gl]'-x] |

i=1 \ j=1

2

<o?(p(B7'6) I —y1)’,

where p(-) denotes the spectral radius for a matrix. With a
slight modification to [5, Lemma 4], it can be shown that
ap(B7G) < 1. Together, this shows that 7'(+) is a contractive
map. Applying the Banach’s fixed point theorem yields the
lemma. |

B. Proof of Proposition 1
Proof: To prove the first part of the proposition, we notice
VJ(x) = a — 2Bx + Gf(x) + Ds(x)G x, (14)
where Dy(x) := Diag(f'(x1), ...
82‘] /!
— = —4bi+ Y Gixf"(x;) < —4b;

ox; 7

,f' (x,)). Furthermore,

Furthermore, as f(x) is 1-Lipschitz, we have |f'(x)| < 1. By
Assumption 3, we have

n
4b; —2p = > (Gj+ Gj)

j=1
32J

> > |Gif (%) + Gif i) = |-
j#i i O

As such, V2J(x) + 2plI is diagonally dominant. By the
Gershgorin Circle Theorem, V2J(x)+2pI is negative semidef-
inite. We conclude that J(x) is 2p-strongly concave.

For the second part of the proposition, by (14), the unique
maximizer, x*, of J(x) must be strictly positive. Since x > 0,
this must correspond to a pricing vector p = a+Gf (x*) — Bx*
feasible to (3). Then, such pricing vector must also be optimal
to (3) and show that J(x*) = J(xNE(p*)). [ ]

C. Proof of Theorem 1

Proof: Note that at the pricing strategy of p, = a/2, one
must have xo := xNE(p,) > 0 and thus
—B1(?
xo =B (5 +Gtao) ). (17)
Denoting h(x) = f(x) — Dr(x)x, where Ds(x) =
Diag(f’(x1), ...,f (x,)). We observe that h(x) > 0 for any

x > 0, and it is an non-decreasing function in x due to the
concavity of f. We have

VJ(x0) = a — 2Bxo + Gf(xo) + Dy (x0)G "xo

= —Gf(xp) + Dy (x0)G " xo. (18)

Furthermore, if f is strictly concave, then h(x) > 0 and we
further note that

xg VJ(x0) = —x] Gh(xo) < 0. 19)

The above establishes VJ(xp) # 0. Since we also have xg > 0,
this shows the suboptimality of xo and proves (9).

To estimate the ratio J(x*)/J(xg), our idea is to apply
Taylor’s theorem to approximate J(xg) around x*. To handle
the nonlinearity, we shall first derive lower and upper bound
estimates for xo, x* and exploit the monotonicity of f(-).

From (17), we immediately obtain x¢ > %B‘la. On the
other hand, using f(x) < x, we have

2Bxy = a + 2Gf(xp) < a + 2Gxy. (20)
Under Assumption 3, (B — G)’1 is non-negative. Thus,
x < (1/2B -6 a. @D
Similarly, we can lower and upper bound x*. From the
optimality of x*, we have
2Bx* = a + Gf(x*) + Dy (x*) G x* (22)
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We immediately get x* > %B‘la. On the other hand, using
If'(x)| <1 and f(x) < x yields

2B <a+(6G+G ' (23)
The matrix (B — %)’1 is non-negative. This implies
1 G+G'\
*< | B-— 24
=32 2 “ @9

Our next step is to derive a few estimates using the mean
value theorem. To this end, define X = {xg + a(x* —x¢):x €
[0, 1]} as the line segment between x( and x*. By |[f”(x)| < M,
applying the Gershgorin circle theorem shows that for the
negative definite matrix V2J(x), we can lower bound its
minimum eigenvalue as

Ammin (V2J(x))

n n

> —max MZGjixj + Z(Gl] + Gji) + 4bi
=1

=146 + (6 +GT)1+ MG x| = —v.

j=1
(25)

The lower bound in the above decreases when x increases.
Thus, we conclude that Amin(V2J(x)) > —v for any x € X,
where we recall v from (11) and x™2* max{%(B —

G) la, %(B — %)_la} is the element-wise maximum
between the upper bounds on x*, x¢ in (21), (24). As a
consequence of the above analysis, we note that by the mean
value theorem, for some x € X,

VJ(x0) = V2 (x)(x0 — x*). (26)
since VJ(x*) = 0. It follows that
VIl < IV2T @)l lxo — x*|| < vlixo —x*[.  (27)
On the other hand, using (19), we have
IVI o)l = (llxol) ™" xg Gh(xo). (28)

We conclude the proof by applying Taylor’s theorem on
J(xp). For some x € X, it holds

1
J o) = J(x") + 3 (x0 = ¥) VI (0 (x0 — x*)

> J(x*) — plixo — x*|1%. (29)
Subsequently,
J(x* _ *2 vJ 2
R bl . %II xo)lI* (30)
J(x0) J(x0) v J(xo)

Note that with the upper bound on x(p, we get the estimates:

J(xo) < 3a" (B—G)~la, x|l < [I5(B—G)'a], and
1 1
xj Gh(xo) > 5aTB—lch(Ezs—la). 31)
This yields
Tr-1 112—1,))\2
Jxo) T v (aT(B-G)la)|(B-G)al?
and concludes the proof. |
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