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Abstract—Learning the graph topology of a complex network is

challenging due to limited data availability and imprecise data models.

A common remedy in existing works is to incorporate priors such as

sparsity or modularity which highlight on the structural property of

graph topology. We depart from these approaches to develop priors that

are directly inspired by complex network dynamics. Focusing on social

networks with actions modeled by equilibriums of linear quadratic games,

we postulate that the social network topologies are optimized with respect

to a social welfare function. Utilizing this prior knowledge, we propose

a network games induced regularizer to assist graph learning. We then

formulate the graph topology learning problem as a bilevel program.

We develop a two-timescale gradient algorithm to tackle the latter. We

draw theoretical insights on the optimal graph structure of the bilevel

program and show that they agree with the topology in several man-

made networks. Empirically, we demonstrate the proposed formulation

gives rise to reliable estimate of graph topology.

Index Terms—graph signal processing, graph topology learning, net-

work games, bilevel program

I. INTRODUCTION

Graph-based structures are increasingly utilized in data science to
represent relationships among features and datasets. In particular,
graph representations are pivotal for unveiling relational networks
and supporting diverse learning tasks like graph neural networks,
sampling, semi-supervised learning, and graph signal processing
(GSP). In many applications, graph topologies are neither imme-
diately available nor easily discernible. This necessitates inferring
graph topologies from node observations, a.k.a. graph signals. Such
problem, also known as graph (topology) learning, has garnered
attention in machine learning and signal processing. Recent works
have developed graph learning algorithms utilizing GSP models,
leveraging properties such as smoothness and stationarity [1]–[3].

Learning the graph topology of complex networks is challeng-
ing due to limited data availability and imprecise data models.
To tackle these issues, a common practice is to incorporate prior
information to assist graph learning via regularization. Notably, as
demonstrated in [4]–[9], integrating carefully crafted regularizers
can induce desired graph structures—like sparse, modular, bipartite,
regular graphs—within the graph learning paradigm. However, apply-
ing such designs requires a-priori knowledge on the graph topology
which are often acquired in a heuristic fashion. For instance, graphs
of certain networks are found to be sparse or modular as observed
from the patterns in a number of real world networks.

An alternative perspective is motivated by incorporating the in-
teractions between graph topologies and tasks over graphs in the
learning process [10]. We conjecture that graph topologies can be
viewed as the optimized solutions with respect to a function/task
of the latent network dynamics. Considering the case of social
networks, actions of individuals can be modeled as the equilibrium
of a network game determined by the graph topology [11]. The
‘optimality’ of a graph topology can be measured thru the equilibrium
actions—a natural choice is the total social welfare function taken
as the aggregated equilibrium action [12]. As a motivating example,
Table I shows the average performance loss in total social welfare of
perturbing several graph topologies under random rewiring (details in

Rewiring 10% 20% 30% 40% 50%

Karate 94.06% 88.86% 84.72% 81.17% 78.30%
WikiVote 96.28% 93.07% 90.32% 88.01% 86.11%
Dolphins 98.15% 96.48% 95.13% 93.97% 93.08%

TABLE I: (Top) Graphs of tested networks. (Bottom) Impact of
random rewiring on total social welfare. See Example 1 of Sec. III.

Example 1). We find that man-made or social networks (WikiVote,
Karate) are more sensitive to random rewiring than the non-man-
made ones (Dolphins). Our observation suggests that man-made or
social networks may be optimized for maximum total social welfare.

This paper leverages the total social welfare as a functional prior
for graph learning. It departs from the conventional structural prior
approach with an emphasis on knowledge of the tasks performed
by networks and suggests to regulate graph learning by adjusting the
latent network dynamics that drives the prior. As the first step towards
treating general functional priors, our contributions are:

• We propose and formulate a graph learning problem from smooth
signals with a network game induced prior (GLGP). The latter is
formulated as a bilevel program, which is tackled by developing a
two-timescales gradient (TTGD) algorithm inspired by [13].

• We analyze the GLGP problem and provide theoretical insights on
the graphs learnt from maximizing the social welfare. Particularly,
we show that it induces graph topology with a few hub nodes,
which coincides with the examples in Table I.

• We show that the proposed TTGD algorithm finds an O(1/K)-
stationary solution to the GLGP problem after K iterations.

Finally, we present numerical experiments on synthetic and real data.
The proposed GLGP problem learns topologies that are optimized
in a task-based manner while respecting the (smooth) graph signal
observations. In settings with insufficient data, the proposed method
outperforms several state-of-the-art graph learning algorithms.

Related Works. In addition to the above cited works, network games
have been used for modeling graph data and have inspired the graph
learning problems in [14]–[17], as well as low pass graph signal
models [18], [19]. Our work differs from them as we treat the network
games only as the latent dynamics driving the functional prior, while
the graph learning component depends on the general property of
smoothness. Lastly, we notice that recent works have considered non-
structural priors, e.g., [20], [21] applied learning-to-optimize to learn
a prior function from graph templates, [22] studied the use of domain
knowledge, [23] analyzed fairness as a prior.IC
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II. PRELIMINARY: GRAPH LEARNING FROM SMOOTH SIGNALS

We review the graph learning framework from smooth signals in
[6]. To fix notations, we consider a networked system characterized
by the possibly directed graph G = (V,E) with the node set V =
[N ] := {1, . . . , N} and edge set E → V ↑ V . The ordered tuple
(i, j) ↓ E indicates an edge from i to j. The graph G is endowed
with a (possibly non-symmetric) adjacency matrix, W ↓ RN→N

such that Wij ↔= 0 if and only if (j, i) ↓ E.
Our goal is to learn the matrix W given a dataset of M graph

signals denoted by X := (x1, . . . ,xM ) ↓ RN→M . The graph signals
are assumed to be smooth such that the signal values, xm,i, xm,j ,
are similar between pairs of adjacent nodes, i.e., if (i, j) ↓ E or
(j, i) ↓ E. For example, this corresponds to the case where the
graph signals are the output of a low pass graph filter [18], e.g., heat
diffusion process, DeGroot opinion dynamics.

Consider the following convex optimization problem for learning
the graph topology W inspired by [6]:

min
W

J(W ;X) :=
1

2M

N∑

i,j=1

Wij↗xrow
i ↘ xrow

j ↗2 + ω↗W ↗2F (1)

s.t. W ↓ S := {W : W ≃ 0, diag(W ) = 0,W1 = c1},

where xrow
i ↓ RM denotes the ith row vector of X , c,ω > 0 are

regularization parameters and S is the set of admissible adjacency
matrices. Similar formulations to (1) include the GLSigRep model
[5] which can be considered as a special case of (1) as discussed in
[6]. This allows one to connect (1) to the MAP estimation of W
under a graph filter model [5]. In particular, with sufficient number
of observations (M ⇐ 1), solving the graph learning problem (1)
yields an accurate estimate of the ground truth topology. We remark
that in [6], the above formulation was developed for the case when
W is symmetric. Moreover, alternative formulations can be applied,
e.g., via exploiting stationary graph signals [24], structural equation
model [14]; see the overviews in [1], [2].

In practice, high quality smooth graph signals are rare for large
networked systems. Typically, M ⇒ N . It is customary to introduce
an additional regularizer to (1). Let ε > 0, we consider

minW↑S J(W ;X) + εR(W ). (2)

Common designs for the regularizer R(W ) impose prior knowledge
about the structure of graph topology. Examples include inducing
graph without isolated nodes R(W ) = ↘1↓ log(W1) [3], [25],
inducing modular graph with K densely connected components by
R(W ) =

∑N
i=K+1 ϑi(W ), where ϑi(·) denotes the ith largest

eigenvalues [9]; also see [8]. Although these are intuitive designs,
they may fail to capture the intricate features in the graph topology.

As mentioned in the Introduction, this work focuses on a novel
class of regularizer for graph topology learning using prior informa-
tion modeled directly by the networked system dynamics. The next
section will introduce a functional regularizer induced by network
games inspired by the economics literature.

III. GRAPH LEARNING WITH NETWORK GAMES PRIOR

We will first introduce a general linear-quadratic network game
and discuss its basic properties. Then, we will develop a network
games-inspired regularizer R(W ) as an implicit function of W and
justify its effectiveness using real network examples. Finally, a two-
timescale gradient descent (TTGD) algorithm will be derived to tackle
the resultant bilevel optimization problem. Due to space limit, we
relegate the missing proofs in this section to an online appendix:
https://www1.se.cuhk.edu.hk/↔htwai/pdf/icassp25-glgp.pdf.

Network Games. Let i ↓ V denotes the ith individual/agent in a
social network described by W , yi ↓ R+ be the action selected by
the ith agent, and y↗i denotes the vector y = (y1, . . . , yN ) with
the i-th element removed. We concentrate on the network games
with linear-quadratic payoffs and strategic complements [11]. For
any i ↓ V , the ith agent selects an action yi to maximize a payoff
function which balances the cost of their action yi with the benefits
influenced by their neighbors’ actions yj :

Ui(yi;y↗i;W ) = ↘ y2
i
2 + yi

(∑N
j=1,j ↘=i Wijf(yj) + bi

)
, (3)

where bi ≃ 0 is the marginal benefit and f : R+ ⇑ R+ is an
interaction function such that an increase in neighbor’s action can
positively affect yi [26]. Throughout, we assume W ↓ S and

H1. The function f : R+ ⇑ R+ is 1-Lipschitz, twice differentiable,
non-decreasing, and concave. Moreover, it holds that f(0) = 0,
f(x) ⇓ x, |f ≃≃(x)| ⇓ 1 for any x ≃ 0, and c < 1.

Given W , we are interested in the Nash Equilibrium (NE) strategy
of (3), yNE(W ), which is a set of actions taken by agents in V where
no agent shall change his/her action after maximizing their individual
utilities. In other words, it holds that

yNE
i = Ti(y

NE;W ) := argmaxyi⇐0 Ui(yi;y
NE
↗i;W )

= max{0, bi +
∑N

j=1,j ↘=i Wijf(y
NE
j )},

(4)

for all i ↓ V . It is proven in [26] that under H1, W ↓ S,
the NE is well-defined and is the fixed point of T(y;W ) :=
(T1(y;W ); · · · ;TN (y;W )). For example, the actions in an NE
strategy corresponds to the intensity of economics activities [27].

The NE strategy induces a performance metric of the candidate
network W . A reasonable metric is the total social welfare [12]:

Wel(W ) := 1↓yNE(W ) (5)
such that yNE(·) satisfies (4). We conjecture that

(C) the topologies of human-made networks (e.g., social networks)
are self-optimized for maximum Wel(W ).

In general, we presume that network topologies are task optimized.
Although it remains an open problem to verify the conjecture,
empirically we found that several man-made networks exhibit traits
of being self-optimized w.r.t. Wel(W ).

Example 1. We revisit the motivating example in Table I. In detail,
this example evaluates Wel(W ) subject to various levels of random
rewiring. Fixing b = 1, the table shows the welfare ratio

Ppert. = E
[
Wel(Wpert.)↘ 1↓b
Wel(Worig.)↘ 1↓b

]
, (6)

where Worig., Wpert. are the original, perturbed binary adjacency
matrices, respectively. Under conjecture (C), we anticipate that self-
optimized networks will suffer from greater drop in Ppert. than non-
optimized ones with same proportion of random rewiring. The table
supports the conjecture by comparing the results of WikiVote,
Karate networks (man-made) against Dolphins (non-man-made).

We refer the readers to [12], [28], [29] for related observations on
how real world network topologies show traits of self-optimization.
Graph Learning with Network Games Prior. Suppose that the
ground truth graph G is a man-made network. Our next step is to
incorporate the social welfare prior discussed above into the graph
learning formulation from smooth signals.

Under conjecture (C), it is natural to take the regularizer as the
total social welfare function, i.e., R(W ) = ↘Wel(W ). Substituting
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the above into (2) gives rise to the following graph learning with
network games prior (GLGP) problem:

min
W ,y

!(W ,y) := J(W ;X)↘ ε1↓y (GLGP)

s.t. yi ↓ argmaxŷi↑R+
Ui(ŷi;y↗i;W ), ⇔ i ↓ V, W ↓ S.

The proposed GLGP formulation utilizes knowledge from both
smooth graph signals and the social welfare maximizing property of
man-made networks. As Wel(W ) depends implicitly on W , (GLGP)
is a bilevel program with a variational inequality constraint.

A. Structural Interpretation for the Network Games Prior
Note that (GLGP) takes the total social welfare Wel(W ) to mea-

sure the network’s performance and inform graph learning from a task
oriented perspective. To further investigate properties of the network
games prior, this subsection offers a theory-guided interpretation.

Our idea is to consider relaxation of the bilevel optimization
problem and analyze the KKT condition of the relaxed problem. First,
we consider the simplified problem:

minW↑S J(W ;X)↘ ε1↓Wb. (7)
Proposition 1. Under H1, problem (7) is equivalent to a relaxed
version of problem (GLGP).

The proposition is obtained by rewriting the NE condition as nonlin-
ear equality constraints and relaxing the latter using H1.

The above proposition shows that (7) serves as a simplified
surrogate for analyzing the optimal solution of (GLGP). Particularly,

Proposition 2. There exists ϖi ↓ R, i ↓ V such that any optimal
solution to Problem (7) is given by

W ω
ij = 1

2ε max
{
0,εbj + ϖi ↘

↗xrow
i ↘ xrow

j ↗2

2M

}
, (8)

for any i ↔= j and W ω
ii = 0. It also holds that W ω1 = c1.

The proof is obtained by analyzing the KKT conditions of (7).
To study (8), we consider the case when ε ⇐ 1. The proposition

above shows that W ω
ij ↖ ϑ

2ε bj for any i ↓ V . In this way, any optimal
solution to (7) gives a graph topology that exhibits a ‘hub’ structure
where edges are emanated from nodes with large bj . In fact, this
observation coincides with the man-made network examples studied
in Table I where we observe a number of ‘hub’ nodes.

B. Efficient Algorithm for Tackling (GLGP)
The next endeavor is to derive an efficient algorithm for tackling

(GLGP). Here, the problem entails a lower level subproblem that
requires solving the NE given the candidate W , and an upper level
subproblem depending on the computed NE y. While the lower level
problem can be solved by fixed point iteration [26] (under H1), the
overall bilevel problem remains non-convex in general.

Our idea is to develop a two-timescale gradient (TTGD) al-
gorithm similar to [13]. We first notice that under H1, (GLGP)
is equivalent to a single level optimization problem to minimize
ϱ(W ) := !(W ;yNE(W )). A common solution is to apply the
projected gradient descent algorithm: let ς > 0 be the step size,

W k+1 = ProjS(W
k ↘ ς↙ϱ(W k)), ⇔ k ≃ 0, (9)

where ProjS(·) denotes the Euclidean projection onto S. The chal-
lenge of (9) lies in the gradient computation ↙ϱ(W k) since ϱ(W )
has an implicit dependence on W via the NE map yNE(·). Let
ȳk := yNE(W k), it can be shown that [30]

↙ϱ(W k) = ↙̂!(W k, ȳk) := ↙W!(W k; ȳk) (10)

↘ (JWT(ȳk;W k))↓(JyT(ȳ
k;W k)↘ IN )↗↓↙y!(W

k; ȳk),

where JWT(·), JyT(·) denotes the Jacobian of the operator T :
RN ⇑ RN in (4) w.r.t. W ,y, respectively, and ↙W!(·),↙y!(·)
denotes the partial gradient taken w.r.t. W ,y, respectively.

However, evaluating ↙ϱ(W k) requires the NE strategy yNE(W k),
where the latter may not be available in closed form. That said, when
W k is fixed, the fixed point iteration y ∝ T(y;W k) finds the NE
strategy at a linear rate [31]. As inspired by [13] and let ς,φ > 0
be the stepsizes, we consider:

Two Timescale Gradient (TTGD) procedure: for k ≃ 0,

yk+1 = yk + φ(T(yk;W k)↘ yk), (11a)

W k+1 = ProjS(W
k ↘ ς↙̂!(W k,yk+1)). (11b)

Comparing to (9), the TTGD procedure uses an inexact version
of the gradient of ϱ in (11b) evaluated on yk. Here, the intuition is
that when ς ⇒ φ, W k will appear to be ‘static’ w.r.t. the update of
NE strategy (11a). By adjusting ς,φ, we can ensure that the latter
finds a close approximation for yNE(W k) and therefore the algorithm
converges. Formally, we observe that:

Theorem 1. Assume H1, then there exists a set of step sizes with
φ = 1↗c

(1+c)2
, ς ⇒ φ, such that it holds for any K ≃ 1,

min
k=1,...,K

↗ς↗1(W k ↘ ProjS(W
k ↘ ς↙ϱ(W k)))↗2 = O(K↗1).

Notice that H1 guarantees that the fixed point map satisfies
↗T(y;W ) ↘ T(y≃;W )↗ ⇓ c↗y ↘ y≃↗ with c < 1 for any
y,y≃ ↓ RN . Consequently, the Lipschitz-ness of ↙ϱ(W ) can be
established using H1 and other properties of the NE map. The rest of
our analysis follows from adapting the framework in [13] to the case
where the lower level subproblem involves variational inequalities
that are solved in a deterministic fashion.

Lastly, we comment on the computation complexity of (11). The
key bottleneck lies in computing the hyper-gradient in (10) involving
(JyT(yk;W k)↘IN )↗1. This entails a complexity of O(N3) FLOPs
per iteration. Nevertheless, we envision that the algorithm can be
accelerated using penalty based algorithms such as [32], [33].

IV. NUMERICAL EXPERIMENTS

The last section presents numerical experiments on synthetic and
real data to validate the efficacy of (GLGP).

A. Synthetic Data

Our first experiment aims at evaluating the graph learning per-
formance for graph signals generated from a preferential attachment
(PA) graph with one edge to attach for every new node, and N = 50
nodes [34]. The probability of a new edge linking to an existing node
is proportional to its degree relative to the total degree of all nodes.
We concentrate on a scenario with limited data acquired where only
M = 10 ⇒ N smooth graph signals are observed. Each graph signal
is generated via a low pass graph filter, H(W ) = exp(W /2), as
xm = exp(W /2)um+wm, where um ′ N (0, I) is an i.i.d. white
noise excitation and the observation/modeling noise follows wm ′
N

(
0,ϑ2I

)
with ϑ = 0.2. We also fix (ω, c) = (200, 0.95) for (1).

We benchmark the proposed (GLGP) formulation against two
methods: (i) the Smooth-GL method [6] as in (1) without any
structural nor network games regularization (referred as Smooth-
GL), (ii) the linear approximation of the bilevel problem (7), where
the optimization problem is simplified into a single level problem by
approximating 1↓yω(W ) as 1↓Wb (referred as linear approx.).
For the bilevel optimization problem (GLGP), the network game
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is specified with the marginal benefit b ≃ 0, b = max(v1, 0)
set as the top eigenvector v1 of the Euclidean distance matrix, D,
of the observed graph signals, i.e., Dij = ↗xrow

i ↘ xrow
j ↗2. The

marginal benefit vector b is further normalized such that b↓1 = 1.
Furthermore, we consider two settings for the interaction function
f(·) in (GLGP) wih f(x) = x, f(x) = log(1 + x). The bilevel
optimization problem is tackled using the TTGD algorithm with step
sizes (φ, ς) = (0.5, 0.003) and terminated after 700 iterations for
f(x) = x and 195 iterations for f(x) = log(1 + x).

Fig. 1 (left) shows the area under ROC curve (AUC) for graph
learning performance and the total social welfare of the learnt W
against regularization parameter ε, averaged over 20 Monte-Carlo
trials. As ε increases, the regularized graph learning objective will
become more dependent on the network games prior and tend to learn
a graph topology with few hub nodes [cf. Proposition 2]. Observe
that with M ⇒ N , it is desired to incorporate the network games
prior as we observe that tackling (GLGP) yields a solution with better
AUC and social welfare than benchmark approaches such as Smooth-
GL, GLSigRep. Tackling (GLGP) using the prior with the interaction
function f(x) = x performs best. Furthermore, we observe from
Fig. 1 (right) by (GLGP) achieves the highest social welfare.

Our second experiment considers learning the topology of the
Karate Club graph, which consists of N = 34 nodes, with
M = 50 samples of smooth graph signals generated from the
Gaussian Markov Random Field (GMRF) model with the precision
matrix given by the graph Laplacian [5]. Our aim is to showcase
the necessity of tackling the bilevel problem (GLGP) using TTGD
in lieu of the single-level optimization approximation (7). Fig. 2

Maximum Average Minimum

GLGP (f(x) = x) 0.6345 0.5788 0.5271
GLGP (f(x) = log(1 + x)) 0.6570 0.5937 0.5490

Linear Approx. by (7) 0.6429 0.5600 0.5087
Smooth-GL [6] 0.5075 0.4888 0.4777
QuadGame-GL [16] 0.5735 0.5419 0.5120
SpectTemp [24] 0.5760 0.5187 0.4463

TABLE II: Comparing the AUC performance of the graph learnt from
the IndianVillage data [35].

Wel(Ŵ )→Wel(W true)1
Maximum Average Minimum

GLGP (f(x) = x) 4.2754 3.2077 2.1693

Linear Approx. by (7) -0.4790 -1.4241 -2.3927
Smooth-GL [6] -2.3288 -5.8141 -8.6115
QuadGame-GL [16] -1.9386 -3.5631 -5.5949
SpectTemp [24] 0.2653 -2.8122 -6.6532

GLGP (f(x) = log(1 + x)) 1.4464 1.1892 0.8461

Linear Approx. by (7) -0.0676 -0.6144 -1.1429
Smooth-GL [6] -0.5440 -2.8292 -5.0419
QuadGame-GL [16] -0.8206 -1.6814 -3.3074
SpectTemp [24] 0.1453 -1.2226 -3.6324

TABLE III: Comparing the gain in social welfare of the graph learnt
from the IndianVillage data [35]. Top (resp. bottom) rows are
evaluated using f(x) = x (resp. f(x) = log(1 + x)).

shows the Pareto front of the bilevel solution and the approximate
solution, computed by varying the regularization parameter ε that
trades between the smooth-GL objective J(W ,X) and Wel(W ).
As expected, we observe that the TTGD algorithm achieves a better
Pareto front than the approximate solution.

B. Case Studies with Real Data

Our last set of experiments consider learning the graph topology
from a set of real data taken from Indian villages [35]. The dataset
consists of survey data from 40 villages, where the village networks
have sizes ranging from N = 77 to N = 330 agents, and M = 16
samples of graph signals are observed for each network.

We set the parameters in (GLGP) with ω = 1, b = h + 1, where
hi ↓ {0, 1} indicates if the agent is a potential microfinance client
(cf. ‘hhSurveyed’ in the dataset) and b is normalized such that
b↓1 = 1. Additionally, we set ε = 100 and apply the TTGD
algorithm with a stepsize of (φ, ς) = (0.5, 0.003) for 760 (with
f(x) = x) and 320 (with f(x) = log(x+ 1)) iterations.

Table II reports the maximum/average/minimum AUC perfor-
mances among the graph topologies learnt under various settings
and algorithms, compared to the ground truth in [35]. We notice
that GLGP consistently estimates the graph topologies accurately
when used with the interaction function f(x) = log(1 + x).
Similarly, Table III reports the maximum/average/minimum gain in
social welfare compared to the ground truth, for the graph topologies
learnt. As expected, GLGP finds graph topologies that achieve better
performance in the social welfare.

V. CONCLUSIONS

We have proposed a novel graph topology learning formulation
that incorporates prior knowledge of dynamics over the networks. We
study a prior induced by general linear quadratic games and formulate
a bilevel program that can be tackled by a TTGD algorithm. We
envisage that the proposed GLGP framework can inspire new graph
learning formulations using domain knowledge from GSP, network
dynamics, and game theory.
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