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Detecting Low Pass Graph Signals via Spectral
Pattern: Sampling Complexity and Applications

Chenyue Zhang

Abstract—This paper proposes a blind detection problem for
low pass graph signals. Without assuming knowledge of the
exact graph topology, we aim to detect if a set of graph signal
observations are generated from a low pass graph filter. Our
problem is motivated by the widely adopted assumption of low
pass (a.k.a. smooth) signals required by existing works in graph
signal processing (GSP), as well as the longstanding problem
of network dynamics identification. Focusing on detecting low
pass graph signals on modular graphs whose cutoff frequency
coincides with the number of clusters in the graph, we study
and leverage the unique spectral pattern exhibited by such low
pass graph signals to devise two detectors: one is based on
Perron-Frobenius theorem, one is based on the K-means score.
We analyze the sample complexity of these detectors considering
the effects of graph filter’s properties, random delays, and other
parameters. We show novel applications of the blind detector
on robustifying graph learning, identifying antagonistic ties in
opinion dynamics, and detecting anomalies in power systems.
Numerical experiments validate our findings.

Index Terms—ILow pass graph filters, blind detection, sampling
complexity, spectral pattern.

1. INTRODUCTION

growing trend in signal processing, machine learning,

statistics is to develop tools for modeling and analyzing
data defined on nodes of a graph, formally known as graph sig-
nals. Graphs encode the irregularly structured data and model
the interactions between adjacent nodes. Such mathematical
structure has found applications in social, financial, and biology
networks [2]. An important problem is to understand the role
of graph and its associated dynamics in data. While statistical
methods such as graphical models [3] have been developed, re-
cently popular GSP models have offered a promising approach
that appeals to a wide range of data [4], [5], [6].

Manuscript received 28 June 2023; revised 1 March 2024 and 4 June 2024;
accepted 10 June 2024. Date of publication 26 June 2024; date of current
version 26 July 2024. This work was supported in part by the CUHK Direct
under Grant 4055135 and in part by the HKRGC under Project 24203520.
An earlier version of this paper was presented at the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2021 [DOI:
10.1109/ICASSP39728.2021.9415031]. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Shogo
Muramatsu. (Corresponding author: Chenyue Zhang.)

The authors are with the Department of Systems Engineering and Engineer-
ing Management, The Chinese University of Hong Kong, Shatin, Hong Kong
SAR 999077, China (e-mail: czhang @se.cuhk.edu.hk; yrhe @se.cuhk.edu.hk;
htwai @se.cuhk.edu.hk).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TSP.2024.3419182, provided by the authors.

Digital Object Identifier 10.1109/TSP.2024.3419182

, Yiran He

, and Hoi-To Wai

A fundamental building block of GSP is the linear graph filter
which extends the classical linear time-invariant (LTI) filter
from time domain to the node domain. It enables one to model
graph signal as the output of a graph filter subject to excitation
input. The graph filter acts as a black box that abstracts the
complex network dynamics leading to the observations. Using
this modeling philosophy, GSP algorithms have been developed
for signal sampling, interpolation, graph topology learning, etc.
[4]. They have been successfully applied to data from social
networks, financial networks [7], brain activity dynamics [8],
and physical networks [9].

Similar to LTI filters, linear graph filters may be classified
as low pass, band pass, and high pass, in accord with its fre-
quency response function [5]. In the GSP literature, low pass
graph filters are usually assumed which lead to smooth graph
signals that have similar signal values over adjacent nodes on
the graph. Such low pass or smooth signal assumption has been
a critical condition used for graph topology learning [10], [11],
[12], [13], blind community detection [14], [15], [16], [17],
centrality estimation [18], [19], [20], denoising [21], sampling
[22], graph neural networks [23], [24]. On one hand, the low
pass assumption can be justified using dynamics models from
physics and social science [7]. On the other hand, without
rigorous validation, the validity of the low pass assumption can
be questionable. Example scenarios include when the system is
under attack [25] or the observed data is corrupted [26].

To illustrate the risks in applying the above GSP works on
non low pass data, e.g., corrupted data, we present a case study
on graph topology learning from meteorology data using GL-
SigRep [10]. The ‘clean’ dataset consists of the daily mean
temperature in Netherlands from June 2020 to Feb 2023 on
N =35 stations and M = 1000 days of samples [available:
https://www.ecad.eu/]. A corrupted dataset is formed by insert-
ing noise into the clean dataset at random instances (see the
caption of Fig. 1). The GL-SigRep algorithm [10] is applied
to learn the weather station graph from the datasets. As the
ground truth topology is unknown, we consider two evaluation
metrics inspired by [10]. We first compare the similarity be-
tween the learnt graphs and a proximity graph constructed by
assigning an edge between two stations if their distance is less
than 125km. The area under ROC (AUROC) scores are 0.8258
(clean dataset), 0.4379 (corrupted dataset). The result for the
clean dataset is consistent with the proximity graph, yet for
the corrupted dataset, GL-SigRep may have learnt an erroneous
graph. Next, we apply spectral clustering on the learnt graphs
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Graph topology learnt by GL-SigRep [10] and clustering results by spectral clustering on the (Left) clean dataset, (Middle) corrupted dataset,

(Right) pre-screened dataset. The corrupted observations are generated as 10 batches of ideal order-5 high pass signals, each with a duration M}, = 50, and
they are injected into the dataset at random positions; see (22). ‘X’ denotes the isolated nodes in the learnt graph. We set mpatch = 50 and § = 0.65 for the
pre-screening procedure. The AUROCs compared to the proximity graph are 0.8258 (Clean) / 0.4379 (Corrupted) / 0.7597 (Pre-screened). With the MDL
criterion, we found K = 3 clusters in the graphs learnt from clean and prescreened data.

where the number of clusters K is determined by minimum
descriptive length (MDL) [27]. As seen in Fig. 1, the clustering
results from clean dataset are consistent with geography of the
Netherlands which has low, flat lands in the west/north, and
higher lands in the east/south; yet for corrupted dataset, the
clustering result is inconclusive.

The above case study shows that applying GSP works on
non low pass data without verifying the assumptions is risky
as it may return inconclusive results that can harm downstream
applications. As noted by [12], [13], a possible solution is to
utilize alternative signal models. However this may incur other
issues. For example, although the spectral template method [28]
does not require smooth graph signals for topology learning,
it has strict requirements on the excitation model and involves
complex optimization criteria.

Instead of inventing new signal models, this work aims to
complement existing GSP works by studying a blind detection
problem which distinguishes if the given graph signals are low
pass or not. Our work is motivated by two important aspects
that have not been studied in the GSP community. (i) We de-
vise a procedure to validate the low pass property in graph
data required by GSP tools. (i) We address a blind system
identification problem by determining the type of graph filter
followed by the graph data, and thus categorize the dynamics
involved. As a preview application of our method, we apply the
said procedure (see Sec. V) to prescreen the corrupted dataset in
Fig. 1 and then run the GL-SigRep algorithm. The learnt graph
achieves an AUROC score of 0.7597 compared to the proximity
graph, and produces a clustering result that is consistent with
the geography of the Netherlands.

Note that our blind detection problem is in general ill-posed
due to the lack of exact graph topology knowledge. As a rem-
edy, we concentrate on modular graphs consisting of a few
densely connected components, i.e., a common case for so-
cial, biology, finance, physical networks [29]. Our idea lies in
observing a unique clustered spectral pattern in the principal
subspace spanned by low pass graph signals from modular
graphs. Our contributions are:

* We develop blind detection methods for low pass graph

signals through identifying the (dis)similarities between

the low graph frequency subspace of the graph shift op-
erators (GSO) and the principal subspace spanned by ob-
served graph signals. We derive properties of the principal
subspace spanned by low pass graph signals.

* We derive finite-sample performance bounds for the blind
detectors when the graph (i) contains only one connected
component with similar connection probability, (ii) is mod-
ular and contains K clusters following a stochastic block
model (SBM) [30]. Our result shows that the detection
performance improves with more nodes and/or the graph
filters have sharper cutoffs. We also give insights for the
detection performance applied to non-SBM graphs.

* We discuss applications utilizing the proposed detectors.
First, we design a prescreening scheme to robustify graph
learning through removing non low pass graph signals
from the dataset prior to applying graph learning. Second,
we derive models for opinion dynamics with antagonistic
relationships [31], [32] and power systems under data in-
jection attack [33], [34]. Our detection method provides a
data-driven evidence to discover such phenomena.

The proposed detection method takes its inspiration from
recent works on blind graph feature learning. Examples are
community detection [14], [15], [16], [17], centrality estimation
[18], [19], [20], equitable partitions [35], etc. These works
derive knowledge from the principal signal subspace under the
premise that the observations are low pass. In comparison, we
take an inverse problem perspective by inquiring if a given set of
graph signals are low pass. Notably, our development involves
showing a converse result that the said spectral pattern cannot
be found in non low pass signals.

Furthermore, this paper makes a first step towards blind
(topology-free) identification of unknown systems [36] to de-
termine the type of dynamics on a network. For example, the
presence of antagonistic relationship in social networks result
in an opinion formation process that can be described as non
low pass graph filter; in power systems, data injection attacks
result in graph signals of nodal voltages that are not low pass.
In comparison, prior works on graph filter identification either
utilize controlled perturbation experiments [37], [38], or require
full knowledge of the graph topology [39], [40].
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The rest of this paper is organized as follows. In Sec. II, we
describe the observation model and the problem of detecting
low pass graph filters. In Sec. III, we propose blind detection
algorithm for the low pass graph signals. In Sec. IV, we analyze
the sampling complexity of the proposed algorithms. Sec. V
describes three new application examples for our algorithm.
Sec. VI concludes the paper with numerical examples. Com-
pared to the conference version [1], we consider low pass
graph filters with high cutoff frequencies as well as providing
a complete performance analysis. We also studied applications
on detecting the network dynamics types.

II. PROBLEM STATEMENT

Consider an undirected, connected graph with /V nodes given
by G=(V,E), where V =[N]={1,..., N} is the node set
and E CV x V is the set of edges. The (weighted) adjacency
matrix of G is a symmetric matrix defined by A = [A;;] such
that A;; > 0 if (4,7) € E, otherwise A;; = 0. The normalized
adjacency matrix is given by Aom = D Y2AD™ 2 where
D is the diagonal matrix with the ith diagonal element d; =
Zj‘vﬂ A;j, and the Laplacian matrix and normalized Lapla-
cian matrix is defined by L = D — A and L,orm = I — Anorm
respectively. A graph shift operator (GSO), denoted by S, is
a symmetric matrix such that S;; #0 only if (i,5) € E or
1 = j. For example, the (normalized) adjacency and Laplacian
matrices are admissible GSOs. The GSO admits the eigen-
value decomposition S = VAVT, where the columns of V =
(v1,...,vy) are the eigenvectors and A = Diag(A1, ..., Anx)
is a diagonal matrix of the eigenvalues known as the graph
frequencies. They are assumed to be distinct for simplicity,
and are in ascending order as Ay < Ao <--- < Ay for Se€
{L, Lyorm }; or in descending order as A\ > Ay > -+ > Ay for
Se{A, Anorm}-

We concentrate on the case where G is a modular graph [29],
[41] with K < N densely connected clusters'. Mathematically,
the modularity of GG is characterized by the normalized cut: let
C1,...,Ck be a partition of [N],

K
Aij
NCut(Cy,...,Ck) = Z Z Z Zéeck Zm]e[N] A

k=11€Cy j(;ZCk
(1)

If NCutj :=ming, ¢, NCut(Cy,...,Cx)~0, we say that
the graph is K-modular. Importantly, it is known that when
S = Lyorm, the condition NCut} ~ 0 implies A1, ..., Ag =0
[15], [42]. We notice that modular graphs are common in social,
economics, biological networks [29]. On the other hand, the
popular SBM is a generative random graph model that lead to
modular graphs with high probability [43].

We consider linear graph filter as a continuous matrix func-
tion. Let Ty € N U {00} be the number of filter taps, a linear
graph filter is described by [5]:

H(S) =2 hSt =VAA)WV T =URUT, (2

I'The number of clusters depends on the nature of the network, e.g., for
social networks with N =100 to 1000 nodes, typically K <5 [41], for
biological networks with N = 1000 to 5000 nodes, typically K < 50.
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Fig. 2. Frequency responses h();) against eigenvalue X;. (Green)
Hi(L)= (I —0.1L)~', (Blue) Ho(L)=(I+0.1L)"' and (Red)
H3(L) = exp(—0.5L). The red shadow region indicates L, region and
the black shadow region indicates Ljgp region. Note that Hz2 (L) and H3(L)
are I = 3-low pass filters while 71 (L) is not [cf. Definition 1].

where we have defined the frequency response function as
h(A) = 32724 X\t and h(A) is a diagonal matrix with the en-
tries {h()\;)}V,. The diagonal matrix h := Diag(h1, ..., hy)
is composed of the eigenvalues for (S) sorted as |h1| > |ha| >
-+« |hnl, such that U is the corresponding column re-ordered
version of V.

Note that |h(\)| measures amplification or attenuation of
the energy of a graph signal at frequency A\. We observe the
following definition for low pass graph filters [7]:

Definition 1: A graph filter 7(S) is said to be K low pass if

. maX;=g+1,...,N |h(/\z)‘
NK ‘= .
min;—1,. K |h()\z)|

<1. 3)

We refer our readers to the illustration in Fig. 2. The smaller
Nk 1s, the ‘sharper’ the low pass filter is. The integer K €
{1,..., N — 1} represents the cut off frequency. Notice that the
graph frequencies can be unevenly distributed. Take S = Ly om
as an example, a low pass frequency response function h(\)
(e.g., a decreasing function in M) is usually K-low pass if
the underlying graph is modular with K densely connected
components. Intuitively, this is because one has Ay, ..., A\x =0
in the ideal case while Ak 41, ..., Ay are bounded away from 0
[43] and h()) is continuous in .

We consider the observation model where M filtered graph
signals are obtained according to:

ym:H(S)H(S) m”L"_wnu mzl)"'7Ma (4)
—_————
Jp, times

such that x,,, € R is the excitation (a.k.a. input) signal and
w,, € RY is the observation or modeling noise. Moreover,
the signal component of y,, is the result of cascading J,,
copies of H(S), which models the random delays in observa-
tions. This is motivated by the practical consideration where
the delays may vary from sample to sample when acquiring
the graph signals such as in rumor spreading; see [39, Sec. II-
Cl. Eq. (4) assumes a scenario that the observations/states on
nodes following a dynamic process governed by the graph filter
H(S). As a convention, we say that y,,, generated from (4) is a
(K-)low pass graph signal with respect to (w.r.t.) S when
H(S) is (K-)low pass.
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Fig. 3. Low pass (in green), non low pass (in black) graph signals generated
from #(S) on an SBM graph with K =2 clusters and N = 50 nodes. For
each graph signal, we plot its elements sorted in ascending order. The low
pass signals exhibit a piecewise-constant feature.

For simplified theoretical analysis, we assume that the ob-
served signals are stationary [44], i.e., the excitation x,, is zero-
mean with covariance C, = E[x,,x, ] = I. The observation
noise is zero-mean with E[w,,w,’ ] = c2I. The delay .J,,, is
uniformly distributed over {1, ..., J}. Our detection methods
can be readily applied even when C, # I and is possibly low
rank; see the supplementary material.

A. Low Pass Graph Filter Detection Problem

Given a set of graph signals {y,,, }*_,, we wish to determine

if the signals are low pass or not w.r.t. S. As mentioned, the
problem can be easily solved if the GSO S is known. For exam-
ple, with noiseless observation, J = 1, we can estimate |h(\;)|?
foreachi =1,..., N through the periodogram v, E[y,,y," |v;
[45] and verifying Definition 1 directly.

Our aim is to tackle the detection problem in a blind setting
where the GSO is unknown. This pertains to applications such
as graph learning where the graph topology itself is the object
to be estimated. However, the blind detection problem is ill-
posed in general: a set of graph signals can be simultaneously
low pass w.r.t. a graph while not low pass w.r.t. another graph.

Motivated by that many real networks graphs tend to be
modular [29] [cf. (1)], we inquire if such graphs can lead to
any discernible pattern in the low pass and non low pass graph
signals generated. Fig. 3 shows the ensemble of low pass, non
low pass signals generated on a modular (SBM) graph with
N = 50 nodes. Here, the low pass graph signals generated show
a unique pattern not found in the non low pass signals: upon a
simple sorting, the graph signal is almost piecewise constant.
The demonstrated pattern suggests that under the premises of
modular graph with K > 1 clusters, where K is known, the
blind detection problem for K low pass graph signals can be
solvable. Formally, our main problem is:

Problem 1: Given the number of clusters K, and a set of
graph signals {y,,}M_, generated from (4), we determine if
the underlying graph filter H(S) is K-low pass.

Denote Tgna € {70, 71} as the ground truth hypothesis, where

* To: the null hypothesis refers to when 7(S) is K low pass;

* 71: the alternate hypothesis refers to when H(S) is not K

low pass (may be bandpass, high pass, etc.).

As an extension, one may wish to consider the alternate
hypothesis 77 which includes any graph signals that are not
generated by (4) with K-low pass filter and null hypothesis 7g

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

with K-low pass signals on non-modular graphs. Nevertheless,
we found empirically that our detector(s) is effective in detect-
ing signals that are not generated by (4).

III. DETECTING LOwW PASS GRAPH SIGNALS

We begin our endeavor by analyzing the covariance matrix
of (4). Observe that

Cy =Ely,,ym] = 5 T/ [H(S)* + 021,
where the noiseless covariance is
C, =3 X MO =V (35 ha) V7. ©

Denote the top-K eigenvectors of C,, as Ug. If H(S) is
K low pass, it is clear that U i spans the same subspace as
span{vy,..., vk}, i.e., the eigenvectors of S corresponding to
the K lowest graph frequencies; otherwise if H(S) is notK-
low pass, the subspace spanned by U  contains one or more
eigenvectors from {vgy1,...,vn} of S.

Our idea to handle Problem 1 is to verify whether the
K-dimensional principal subspace of C, coincides with a
particular structure in span{vy, ..., vk } which we refer to as
the spectral pattern of low pass signals. In the sequel, we show
that these structures can be exposed upon careful observations.
The study is divided into two cases depending on the number
of clusters in the graph.

®)

Case of K =1: We first focus on the case when it is known
that the graph G is non-modular (with K = 1). Problem 1 in
this case aims at detecting graph signals that are 1-low pass.
The development hinges on a well-known property for v;:

Proposition 1: Let G be connected. The eigenvector corre-
sponding to the lowest graph frequency, vy, is the only positive
eigenvector’ of Lnorm» L, Anorm» A. For i > 2, the eigenvector
v; must have at least one positive and negative element.

This proposition is a direct consequence of the Perron-
Frobenius theorem; see Appendix B.

Despite its simplicity, Proposition 1 illustrates a sufficient
and necessary condition for detecting 1-low pass signals. When
H(S) is 1 low pass, the top eigenvector u; of the noiseless
covariance 51, is the only positive eigenvector; yet when H(S)
is notl low pass, w; has at least one positive and negative
element. Consider the function:

)

where (u)4 :=max{0,u}, and the function outputs zero if
and only if w is a positive (or negative) vector. Subsequently,
the proposed detector in Algorithm 1 is a direct application

of the above principle which checks if w; from the sampled
~M
covariance C', is the most positive eigenvector.

Pos(u) := min{l|(w)y — ull1, [[(-u)+ +ull1},

Case of K > 2: We consider the case when the graph is mod-
ular with K densely connected clusters. Problem 1 in this case
refers to detecting K -low pass graph signals. For simplicity, we
fix S = Lorm as the GSO in the following discussions. Notice

2Note that both v1, —v1 are eigenvectors with the eigenvalue A;. We as-
sume v1 > 0 to avoid such ambiguity.
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Algorithm 1 Tackling Problem 1

1: INPUT: Observed graph signals {y,, }/
in the graph K threshold parameter d.

2: Evaluate 6’ =(1/M) Em LYY
~ M
3: Compute the eigenvalue decomposition (EVD) of C, as

m—1- 1o. of clusters

s~ . ~ ~ .
UAU , where the eigenvectors uq, ..., uy are sorted in
descending order with the eigenvalues.

4: If K =1, perform the detection as

;7\_: 76, if Pos(.ﬁl) < minj:2 $$$$ N POS(’I/],j)7 (8)
T1, otherwise.
5: If K > 2, perform the detection as
~ if K([aq,...,u 1)
T: 76’ 1 (['ujlv 7'U/K])< ) (9)
T1, otherwise,

where K(-) is defined in (10). R
6: OUTPUT: the estimated hypothesis 7.

0.10

1]

0.05

0.00 107
—— v; sorted X
-0.05 —— v, sorted —— K(Vy_x),K=3
—— v; sorted —— K(Vk),K=3 )
—_v —— [K(‘I/v—»<)./<=2\\S
—-0.10 — v —=— K(Vk),K=2
10_2 2 2.5
500 1000 10 10
sorted/unsorted index j N/K

Fig. 4. (Left) Eigenvectors of Lnorm where the underlying graph con-
tains K =3 clusters. Paled colors denote unsorted eigenvectors. (Right)
K-means score K(Vg) and that of last N — K eigenvectors (N —
K)~ VN i1 K(v;) against N/K.

that both our detection method and analysis can be applied to
other choice of GSOs.

We study {vi,---,vk} as well as the bulk eigenvectors
{vk+1,...,vn}. Unlike the previous case, the spectral pattern
of {va, -+ , vk} may not be obvious at the first glance, where
the eigenvectors’ elements fluctuate between positive and neg-
ative values. Fig. 4 (left) shows the sorted and unsorted eigen-
vectors of S = Lo, for a modular (SBM) graph with K =3
clusters. Upon sorting, the principal eigenvectors vi,va, U3
exhibit a piece-wise constant behavior; while it is not the case
for bulk eigenvectors vy, vs,.... We should mention that the
above phenomena has been observed [42] for modular graphs
where for £ =1,..., K, the elements of v, will be ‘flat’ over
the cluster, i.e., [ve]; . = [vg];,. for all nodes 7, j belonging to the
same cluster; and it has been shown analytically for stochastic
block models [30], [43], [46], [47].
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Together with (6), our observations suggest that low pass
signals lead to covariance matrix with clusterable principal
eigenvectors. To detect such pattern, a natural choice is to apply
the K -means score to measure the degree of (non) low pass-
ness. For any matrix N € RV*X define the score:

R(N) = SinS; (Dz#]zz ISIZnJ

iU s L =1 LES; JES

10)

where 1, € R¥ is the ¢th row of IN. The minimization can be
effectively handled by the standard K -means procedure [48].
We observe that when #H(S) is K-low pass, one has
span{U k } ~ span{vi,..., vk} and thus K(Uk) is small;
vice versa, when H(S) is not K-low pass, Uk contains at
least one eigenvector from the bulk {vk+1,...,vn} and the
score K(U) is large as at least one of the eigenvectors is
not clusterable. Finally, this suggests a threshold detector on
K(U k) in Algorithm 1. Although the detector shares the same
ingredient with clustering algorithms such as spectral clustering
[42] in applying the K-means score metric (10), our goals are
different. We aim to measure how the principal eigenvectors of

6’24 are aligned with span{wvy, ..., vk}, via (10) which is akin
to performing a clusterability analysis [49].

Thus far, we have only presented empirical insights to derive
the blind detector. To justify the correctness of Algorithm 1, itis
necessary to impose further structure on the detection problem.
Below, we analyze an idealized modular graph model of G
yielded by the planted partition SBM.

Definition 2: [30] Let p,r >0, p+r < 1. We denote G ~
SBM(K, N,r,p) as the random graph with N nodes that are
partitioned into K equal sized blocks Cy, .. .,Cx>. The edges
are generated independently and randomly according to:

p+r, Z'fZ‘GCk,jECk7

i . (11)
T ifi€Ck,j €Cy, kF#L.

Pr((i,j) € E] = {

Take S = Lporm. We shall verify two properties: (i) K(INV) ~
0 when NN is a column permuted version of Vi, (i) K(INV)
is bounded away from zero when IN contains at least one
eigenvector from {vi1,...,UN}.

The first property is confirmed by the proposition:

Proposition 2: Let G ~SBM(K, N,r,p) with p>r >0,
Py > 32008 N4 and take S = Ljom with unweighted ad-
jacency matrix. Then, with probability at least 1 — 2/N,

352K3log N
p(N - K)

for any IN given by permuting the columns of V.

The proof, which is due to [50], can be found in Appendix F.

For the second property where the columns of IN contain
at least one eigenvector from {vgy1,...,vxN}, we provide a
partial answer motivated by empirical studies. To this end, in
Fig. 4 (right) we simulate the K-means scores on the eigen-
vectors K(vy), £ € 1,..., N, of Lyom averaged from M = 500
realizations of G ~ SBM(K, N,log(N)/N,0.1). Observe that

K(IV) < 12)

3For simplicity, assume that N is divisible by K.
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K(Vk) decreases as O(1/N), while for (=K +1,..., N,
K(vy¢) remains bounded from below by a constant. This leads
to the following assumption:

HI: For N> K. Let G ~SBM(K, N,r,p) and denote v,
as the /th largest eigenvector of the corresponding L,om. There
exists a constant csgy independent of N, p, r such that K(v,) >
csem >0, =K +1,...,N.

To our best knowledge, proving the above assumption is
an open research problem. We refer the readers to works on
bulk eigenvectors in SBMs for partial results that affirm the
conjecture: [51], [52] applied random matrix theory to show
that the elements of the bulk eigenvectors vy, f = K +1,..., N
follow a near-Gaussian distribution that would lead to HI.

Now, suppose that at least one of the column vectors in IV is
a bulk eigenvector, vy, £ € {K +1,..., N}, of Lyom. Under
HI1, we have

R(N) 2 K(n{") + - + K(ng) ;3

> K(nc»c’l) =K(vg) > csgm > 0, (13)
where n$°! denotes the ith column of NN . Combining with prop-
erties (i) and (ii), we conclude that as U g can be modeled with
the aboAve cases for NV when M — oo and o — 0, thresholding
on K(U k) detects if H(S) is low pass or not.

Remark 1: Solving Problem 1 requires knowledge on the
number of clusters K. For a number of applications, the latter
is known a-priori, e.g., the graph of US Senate is believed to
have K = 2 due to the bipartisan nature. Otherwise, we apply
a heuristic procedure extended from Algorithm 1: set K=1,

) IfK “'K(U ;) < dgst, then declare that the graph filter is

K low pass; otherwise, go to step 2.
2) If K > K, declare that the graph filter is not low pass;
otherwise, set K=K + 1.

In the above, dgst, K respectively denote the threshold pa-

rameter and estimate on the maximum number of clusters.

IV. FINITE-SAMPLE PERFORMANCE ANALYSIS

This section analyzes the performance of proposed algorithm
when the number of samples M is finite. In a nutshell, our
analysis relies on the fact that the eigenvectors of C, are re-
ordered version of the GSO’s eigenvectors [cf. (6)]. It suffices to
estimate the number of samples required for the spectral pattern
to emerge via the Davis-Kahan theorem.

To facilitate our analysis, let us consider the assumption:

H2: The magnitudes of frequency response are distinct at all
graph frequencies, i.e., |h(A;)| # |h(A;)| for all ¢ # j.

This assumption is easy to satisfy, e.g., it holds when A; # A;
and h(-) is a strict monotonic function. Under 7y, the matrix
Uk is a column-permuted version of Vi = (v ---vk). Let
us also define a few quantities on the eigenvalues of 6y. Set as

the jth eigengap for C,

ABj=B;(Cy) — Bi+1(Cy), j=1,...,N =1, (14

and ABy = oo, where 3;(C,) denotes the j-th largest eigen-

value of C,. To get insights, we recall that h; is the
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jth largest entry in the set of filter frequency responses
{|h(A1)],- .-, |h(AN)|}. Observe that

ABy =530 (B = hi),

where the jth eigengap depend on the frequency response of
the graph filter. For example with K low pass filter defined on
K clusters graphs, as the frequency response maybe flat before
the cutoff frequency at A\, we expect ASk to be large, and is
in fact, proportional to the reciprocal of low pass ratio 1/nk,
while {AS; }sz_l1 is small. In other words, these constants di-
rectly measure the ‘sharpness’ of the graph filter across different
graph frequencies.

15)

Case of K = 1. In this case, Algorithm 1 relies on the positiv-
ity function (7) applied to the top eigenvector of C,. We ob-
serve the sampling complexity bound:

Theorem 1: Assume that there exists constants ¢y, A such
that the graph filters of interest (under 7y or 7T7) satisfy

0<co< min Pos(v;), 0 <A<

i min A8 16)

-
and the noise variance satisfies 02/ N < 272%¢,A. If the num-
ber of samples M satisfies

M S 2¢1 tr(Cy)
log M ~ 2-25¢4A/+/N — 2’

Whe/r\e ¢y is a constant independent of N, M, then it holds
Pr(T =Tgnda) > 1 —10/M, where the randomness is due to
sampling from (4).

The proof is relegated to Appendix D.

The constants cg, Anin inform the class of admissible (low
pass or non-low pass) graph filters and its underlying GSO that
are detectable by Algorithm 1 with enough samples. In par-
ticular, the constant cg denotes the spread of the values in
non-principal eigenvector v; of admissible GSOs. There are
normally ©(N) negative elements in v; as deduced in [53],
implying co = ©(v/N). Thus, the denominator is positive with
02 =O(A). On the other hand, the constant A depends on
the class of admissible graphs and the ‘sharpness’ of the graph
filters defined on them as discussed in (15). It is bounded away
from zero since the graph only has K =1 cluster. We deduce
that the number of samples M required for correct detection
decreases with small o, tr(C).

A7)

Case of K > 2. The analysis for detecting low pass graph fil-
ters with high cutoff frequency (KX > 2) is more involved since
the graph filters may have frequency response that are non-
monotone in A.

We obtain the sampling complexity bound for Algorithm 1:

Theorem 2: Let G ~ SBM(K, N,r,p) withp > r >0, £ +
r> % and take S = Lorm with unweighted adjacency
matrix. Accordingly, we denote the classes of K-low pass
and non K-low pass graph filters as H®", H{', respectively.
Assume that

A= ianBK:H(S)EHngqui AﬂK >0, (18)
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the following threshold-dependent constant:

. _ § 1225K3log N
Omin 1= mln{\/2 - W, V/ Csbm — \/5} >0,
(19

and the noise variance satisfies 02 < SminZ/ v 8K . If the num-
ber of samples M satisfies

M - 2¢, tr(C)
log M = §pin A/ V8K — 02’

where ¢, is a constant independent of N, M to be defined later
in Lemma 3, then it holds Pr(7 = Tgnq) > 1 — 10/M — 2/N,
where the randomness is due to sampling from (4) and G ~
SBM(K, N, p).

The proof is relegated to Appendix E. Note that when K =1,
A defined in (18) also satisfies the second inequality in (16).

The constants A, Smin characterize the class of K low pass
or non K low pass graph filters detectable by Algorithm 1
upon accruing a sufficient number of samples. In specific, dmin
depends on the user defined threshold value § in Algorithm 1. If
N islarge, and the clusters are dense (due to p) with sparse inter-
cluster connections (due to r +p < 1), we can set 6 = O(1)
which leads to dmin = O(1). On the other hand, A in (18)
depends on the ‘sharpness’ of the admissible graph filters. As
the sample complexity (20) is inversely proportional to A, less
samples will be required to correctly detect the graph filter if
the admissible graph filters are ‘sharper’ at the cutoff frequen-
cies. With a sufficiently small noise variance and large N, M,
Algorithm 1 is guaranteed to solve Problem 1.

Finally, we estimate the sampling complexity of Algorithm 1
from (17), (20). Particularly, with sufficiently small noise o>
and large N, our theorems show that the minimum num-
ber of samples required for correct detection with high
probability satisfies:

VM/log M =Q(A'VK).

As A is large for ‘sharp’ graph filters, i.e., it is proportional to
1/nk for small nx with low pass graph filters, we anticipate
that the detection performance improves for (i) graphs with few
number of clusters and (i) the graph filters to be detected have
sharp cutoffs.

Remark 2: The above result has concentrated on G ~
SBM(K, N,r,p) and S = Lyom. As mentioned, the choice of
SBM model illustrates the performance of Algorithm 1 in an
ideal model. In practice, it gives insights that the detection
performance improves when the underlying graph has dense
clusters and sparse inter-cluster connections.

(20)

ey

V. APPLICATION EXAMPLES

Tackling Problem 1 is a critical step for downstream GSP
applications pertaining to graph data. This section describes
examples to illustrate the applications of proposed algorithms
in (i) robustifying graph learning, (ii) detecting the sign-ness of
opinion dynamics in social networks, and (iii) detecting anoma-
lies for power networks.
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A. Robustifying Graph Learning

Graph learning is a longstanding problem in GSP, whose aim
is to infer the graph topology from graph signal observations
[12], [13]. Among others, a popular setup is to model observa-
tions as smooth graph signals, i.e., low pass graph signals [11],
[54]. In reality, the observations can occasionally be corrupted
by outliers. In light of this, robust graph learning algorithms
have been recently proposed, e.g., [55] for an inpainting ap-
proach, [56] applied distributional robust optimization, and [57]
for an outlier-resilient algorithm.

Our idea is to model the graph signals as being occasionally
corrupted with a non low pass signal p,,,. Let 7(S) be a low
pass graph filter, form=1,..., M,

_JHE)Tm + Wi,
" P+ Wi,

me Mcleanv

(22)
m e Mpolluta

where Mjean, Mpoiye partitions the set [M]={1,..., M},
and w,, is the modeling/observation noise. Notice that (22) is
inspired by [55] when the sampling set is small and selected
randomly. Since the outlier signals can be due to anomalous
sensor measurements or missing data [26], (22) models the
practical scenario when these events persist for a short period of
time and recover afterwards. It is suggested to model the outlier
signals as non low pass (i.e., high pass) signals on graph filters
w.r.t. possibly time varying GSO [7]. For example, the latter can
be modeled as p,,, = Hup(S)x,,, where Hyp(+) corresponds to
anon low pass filter violating Definition 1; or it can be modeled
as a contaminated signal p,, = H(S)x,, + Ap,, with Ap,_,
being a sparse vector.

From Fig. 1 (middle), we recall that learning the graph topol-
ogy directly from (22) via methods like GL-SigRep [54] can
produce inconclusive result. To this end, we propose a simple
solution that pre-screens the dataset by removing corrupted
signals using Algorithm 1. Let mpaich be the batch size such
that there are Mpyatch = M /Mpatch batches. Assuming that K is
known, we apply

1) For b=1,..., Mpatch, apply Algorithm 1 on y,,, m =

(b — D)mpateh + 1, . . ., bMpatch. Remove the batch if the
involved signals are not K low pass.

2) Apply graph learning method such as GL-SigRep [54] or

SpecTemp [28] on the remaining graph signals.

Fig. 1 (right) demonstrated the efficacy of the pre-screened
graph learning procedure (via GL-SigRep) above. We remark
that the parameter mpach trades off between the accuracy of
pre-screening and performance of graph learning. The success
of the procedure hinges on whether M.t is a rare event or
not; see Sec. VI for a detailed study.

B. Detecting Signed Opinion Dynamics

Signed graph is a common model for social networks with
cooperative (trust/friendly) and antagonistic (distrust/hostile)
relationships [31]. We set Gy = (V,ET,E™), where V =
{1,..., N} denotes the set of agents, E*, E~ CV x V de-
note the positive, negative edge sets such that ET N E~ =
(). Accordingly, the graph is endowed with two adjacency
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matrices Ap+ and Ap-, such that [Ag+]; ; > 0 iff (i,7) €
E* and [Ap-];; <0 iff (i,7) € E~, otherwise [Ap+];,; =
[Ag-]i,; =0. We notice that signed graph learning can be
achieved using classical algorithms such as [58] through ac-
counting anti-correlations in data, and recent papers have pro-
posed improved algorithms on the topic [59], [60], [61].

From a system identification point of view, a relevant prob-
lem is to inquire if a social network is dominated with
antagonistic relationships through observing opinion data.
We demonstrate that this problem can be approximated as a
special case of Problem 1, and therefore Algorithm 1 can be
applied. Our model is based on that of Altafini [32] for the
opinion formation process (see [62] for a survey involving
signed graphs) together with R stubborn agents whose opinions
are unaffected by others [63], [64]. The latter represent entities
who inject opinions into the social network. Let y,,,(7), 2 (7)
be opinions of regular, stubborn agents at time 7, we have:

Yu T +1) = (Aps + Ap- )y, (1) + (1 = @) Bz, (23)

where o € (0,1) and B € RM*® represents the mutual
trust/distrust between stubborn and regular agents.
Assume normalized weighted adjacency matrices such that
|Ag+ + Ap-11=1 and [a(Ag+ + Ag-),(1—a)B]1=1.
The recursion (23) is stable and admits an equilibrium state:
y=(1—-a)I —a(Ap+ + Ap-)) 'Bz. (24)
Notice that our signal model in Sec. II was defined only
for unsigned graphs. To analyze (24), we utilize an unsigned
surrogate adjacency matrix for Gy as the GSO matrix S =
A= Aps — Ap, representing an unsigned surrogate graph
G = (V,ET U E~). We observe three cases:

1) When all edges are positive, (24) is the output of graph
filter H(S) = (I — aS)~! with the excitation (1 — ) Bz.
These are K-low pass graph signals [7].

2) When all edges are negative, (24) is the output of graph
filter H(S) = (I + aS)~". In this case, the graph signals
are not K-low pass.

3) When there are both positive and negative edges, it can
be shown using a simple Taylor approximation that

H(S)=(I — a(S+2|Ap-|) "
~ (I —aS)™" + O(a| Ag-|).

(25)

The number/strength of negative edges influence the low
pass property of H(S). R

Recall that the metrics Pos(u,) or K(U k) in Algorithm 1
estimates the level of low-pass-ness for a set of graph sig-
nals. Combined with the observations above, they measure the
strength of antagonistic relationships in a social network.

We remark that our approach differs from recent studies on
signed GSP, e.g., [59]. For given graph signals, our aim is to
detect if the graph is signed or not without knowing the graph
topology, while signed GSP considers the frequency analysis
of the signals defined on the signed graph, where the latter
topology and the signs of edges are known a-priori.
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C. Detecting Anomalies in Power Networks

An important task in power system is to protect the latter
against false data injection attack (FDIA) which may obfuscate
power system state estimator and lead to unstable behavior.
As the power system operations are dependent on the grid of
transmission lines and buses, GSP-derived anomaly detectors
have been studied in a number of prior works [33], [34]. Most of
these detectors require knowledge of the grid’s topology. While
the latter’s knowledge is usually available since the power sys-
tem is man-made, in some scenarios, its topology may not be
precisely estimated when the grid is energized [65], e.g., some
power lines may not be operational.

Similar to the previous application example, our aim is to
showcase that FDIA detection can be cast as a special case of
Problem 1, where we relate the attack-free system states as low
pass graph signals and FDIA event as non low pass signals
[33]. Subsequently, Algorithm 1 can be applied regardless of
error in topology estimation. To fix idea, a power network is
described by G = (V, E) such that V is the set of buses, and F is
the set of transmission lines between buses. Let Y € CV*¥ be
the admittance matrix such thatY; ; = 0if (¢, j) ¢ E. In quasi-
steady state at time ¢, we observe the voltage phasors v; which
can be approximated as the output of a low pass graph filter
H(Y) with the excitation x; [33, Lemma 1]:

vi e H(Y)xy +wy = (dI+Y) 'y +wy,  (26)

where d € C is a scalar that depends on Y and w; € CV cap-
tures the slow time-varying nature of the model. On the other
hand, the observed v; under FDIA is:

v ol = H(Y )z + 6 + wy, 27)

where §; models a possibly sparse attack signal [34], i.e., not
low pass in general. Lastly, under the assumption that an FDIA
event will persist for several samples, Algorithm 1 can be ap-
plied to batches of the voltage phasor graph signals to yield a
topology-free FDIA detector. We envision that such a detector
may be used in conjunction with existing algorithms such as
[33], [34] for efficient detection of FDIA.

VI. NUMERICAL EXPERIMENTS

A. Detecting Low Pass Graph Signals

We consider synthetic graph signals on generated random
graphs to verify our analysis result. The graph signals are
generated according to (4) with the excitation given by x,, €
RN ~ N(0,I) and the observation/modeling noise follows
w,, ~ N (0,021). For the experiments on non-modular graphs
(with K =1), we generate G as an Erdos-Renyi graph with
connection probability of pe, = 21log(N)/N; for experiments
with K > 2 clusters, we generate the graphs according to G ~
SBM(K, N,log(N)/N,4log(N)/N). To benchmark the de-
tection performance, we consider the classes for low pass or non
low pass graph filters #(S) with the hypothesis T : e =7 Lrom
and T; : e"Lrom  where 7> 0 is a parameter controlling the
sharpness of the filters. We also compare with a two-step detec-
tion scheme based on SpecTemp [28] (via the fast implementa-
tion by [66]) which first learns a GSO from the stationary graph
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Fig. 5. Error performance for detecting 1-low pass graph signals against

(Left) sample size M, (Right) graph size N. We set J = 1 for the experiment
with SpecTemp [28].

signals, and then verify if the graph signals are low pass using
Definition 1. All experiments are conducted with 100 Monte-
Carlo trials.

The first experiment concentrates on the case with A = 1 and
evaluates the missed detection (MD) rate, Pr(7 = 71 | 7o), and
false alarm (FA) rate, Pr(7T = To | 71) against M and N respec-
tively in Fig. 5 (left) and (right). We fixed (IV, 02) = (120, 0.01)
in Fig. 5 (left) and (M, 0?) = (1000,0.01) in Fig. 5 (right).
As expected from Theorem 1, larger M and graph filters with
sharper cutoffs (controlled by 7) reduce the error rate; while
larger N raises the error rate. Compared to the benchmark
scheme based on SpecTemp [28] and checking Definition 1,
Algorithm 1 achieves a lower MD rate at the same number of
samples, and is less sensitive to graph size.

The second experiment considers the case with K > 2 and
the filter parameter is fixed at 7 =0.6. As the threshold ¢ in
Algorithm 1 trades off between the false alarm and missed
detection rates, we measure the detection performance through
the AUROC score. Fig. 6 (top) show the performance of Algo-
rithm 1 against M while setting (N, 0?) = (120,0.01), and N
while setting (M, o) = (0.01N?,0.01). Note that in the latter
case, we set M = ©(N?) to compensate for the increase of sig-
nal dimension [cf. (20)]. Again as predicted by Theorem 2, we
observe that the detection performance improves (AUROC —
1) as M, N increase. Additionally, we consider a case when
K is unknown and is estimated using the heuristic in Re-
mark 1. Observe that the performance has only dropped slightly.
Compared to the benchmark scheme based on SpecTemp [28],
we observe improved performance across different sample and
graph sizes for the proposed Algorithm 1.

The third experiment considers the sensitivity of Algorithm 1
to the filter’s sharpness and the modularity of the graphs. We fix
02 =0.01, N =120, M =50, and r = log N/N. Fig. 6 (bot-
tom) plots the AUROC performance of Algorithm 1 against the
filter’s parameter 7 while setting p = 4log N/N, and against
the graph’s modularity p while setting 7 = 0.6. Observe the
detection performance of Algorithm 1 improves as 7 (filter’s
sharpness) increases and p (modularity) increases, confirming
the analysis in Sec. IV.
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Fig. 6. AUROC performance against (Top-Left) sample size M; (Top-

Right) graph size N, where we set J =1, K =2 for the experiments with
SpecTemp [28]; (Bottom-Left) filter’s parameter 7; (Bottom-Right) SBM
parameter p such that p =plog N/N. In the above, Kest refers to the
heuristics in Remark 1 which estimates K from data.
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Fig. 7. Political books network. (Left) The graph topology with K =2
clusters. (Right) AUROC performance against M with Algorithm 1.

Finally, we verify the robustness of Algorithm 1 to the graph
topology on an actual network that is not generated by the SBM,
and detecing via graph signals that are not excited by white
input graph signal. This setup violates some of the assump-
tions required by our analysis. We consider the Political
Books network [available: http://www.orgnet.com/] with N =
105 nodes and |E| = 441 edges, as illustrated in Fig. 7 (left).
The graph has roughly K = 2 clusters.
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Fig. 8. Batch-mode and random-mode pollution, where red part indicates
the positions of corrupted signals.

We consider R € {10, 25} sources simulated as exogeneous
sources of excitation to the graph. Accordingly, the input signals
to the graph filter is generated as x,, = Bz, 2, € RE ~
N(0,I), where B is a sparse bipartite graph with connectivity
2log N/N between the R sources and the existing N nodes
on the graph. The low and high pass graph filters are respec-
tively generated as H(S) = (I + T2Lnorm) ! and H(S) =1 +
ToLporm- Fig. 7 (right) shows the AUROC performance against
the number of samples M collected. Observe that AUROC— 1
as M, R increase. The result illustrates that despite not all
assumptions in Theorem 2 are satisfied, Algorithm 1 remains
effective in tackling Problem 1.

B. Application Examples

This subsection illustrates numerical results from applying
the proposed low pass detection algorithm to (I) robustify graph
topology learning from corrupted signals, (I) detecting antago-
nistic behavior in social networks, (1) detecting anomaly status
in power systems.

1) Robustifying Graph Topology Learning: Consider ap-
plication (I) via pre-screening with Algorithm 1. We aim to
evaluate the approach on synthetic graph models and sig-
nals. Particularly, we simulate a graph with N =20 nodes,
G ~SBM(2, N,log(N)/N,2log(N)/N), and the graph fil-
ter is given by elrm The number of samples and ob-
servation noise variance are (M,o?) = (2000,0.01). To de-
scribe Moiut, We simulate signals that are corrupted in a
batch-mode manner, or are corrupted uniformly at random.
For the batch-mode setting, among the M samples, we ran-
domly select ten time indices {t1,...,t10} as the starting
time for signal corruption. Subsequent signals are randomly
contaminated in batches with the duration My, > 1, as illus-
trated by Fig. 8 (top). In other words, we have Mg =
U}gl{ti, ...y t; + My, — 1}. The uniform corruption setting is
similar to the above where Mt is selected by randomly
picking 10% of the indices from {1, ..., 2000}, as illustrated by
Fig. 8 (bottom).

We evaluate the graph topology learnt using GL-SigRep
or SpecTemp combined with the proposed pre-screening
scheme by Algorithm 1 (denoted ‘Pre-screen GL-
SigRep/SpecTemp’). As benchmarks, we also compare
with Inpaint model [55], OR-GL [57], LS-PGD [56], the
plain GL-SigRep [54] and SpecTemp [28]. Note that the
last two algorithms are not designed for graph topology
learning with corrupted signals. The performance of graph
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learning is assessed via AUROC score. For the pre-screening
procedure, we divide the graph signal dataset into batches of
Mpatch = 00 samples, and apply Algorithm 1 with the threshold
0. The Inpaint model [55] and the OR-GL [57] underwent 20
Monte-Carlo trials each, whereas the remaining simulations
were conducted with at least 200 Monte-Carlo trials.

We test the graph learning performance under batch-mode
corruption. Fig. 9 (left) shows the graph learning perfor-
mance against the density of sparse noise p, while fix-
ing the contamination duration My, =20. For each m &
Moliut, the corrupted signal p,, = H(S)z,, + Ap,, is gen-
erated by contaminating the low pass signal H(S)x,, with
missed observations and sparse outlier noise, the latter is
modeled using a sparse vector Ap,, — 10% of the en-
tries will be missed and a p,/N-sparse noise will be added
with uniformly selected coordinates. For the sparse noise, its
non-zero entries are sampled from A (34,,0.26,) with 6, =
maxy, | H(S)xm||c. The latter model is designed such that
the contaminated graph signals can evade detection by sim-
ple schemes such as thresholding on magnitudes. Moreover,
Algorithm 1 with K =2 is applied with § =0.8. In the fig-
ure, we observe that the pre-screened GL-SigRep scheme
achieves competitive graph learning performance especially
when p; is large. The performance improvement is signifi-
cant compared to original GL-SigRep. The pre-screening pro-
cedure robustifies graph learning against outliers corruption
(22). Additionally, Fig. 9 (mid-left) follows the same simula-
tion setting as Fig. 9 (left) with p, = 0.5. This figure demon-
strates a performance tradeoff when deciding the batch size
Mpatch Of the pre-screening procedure. We observe that the
optimal Mmpatch is around 20-80 which is in the same order
as My, = 20.

The second example considers batch-mode corruption
with the outlier signal model taken from LS-PGD in [56,
Eq. (5)]. Here, the outlier model includes both uncertainty and
noise: for any m € Moo, we have y,, ~ N (p*, ST+ I)
where p* ~ AN(0,I). Fig. 9 (mid-right) compares the graph
learning performance against the corruption duration My,
where we applied the pre-screened GL-SigRep scheme with
the threshold 6 = 0.6. Observe that the pre-screened scheme
delivers favorable performance across the tested range of My,.

Lastly, Fig. 9 (right) compares the performance of graph
learning under the uniform corruption setting with a 10% con-
tamination rate. The other simulation setting follows from Fig. 9
(left). Note that this setting favors OR-GL [57]. We observe
that the pre-screened GL-SigRep scheme performs worse, yet it
still outperforms the other benchmarks such as directly applying
GL-SigRep on the corrupted data.

2) Detecting Antagonistic Ties in Opinion Dynamics: As
discussed in Sec. V, opinion data tend to appear as low pass
(resp. high pass) when the social network is dominated by
friendly (resp. antagonistic) ties. This observation inspires us to
use the normalized score scoreajg; := %K(UK) in Algorithm 1
to measure the strength of antagonistic ties. As benchmarks,
we compare two signed graph learning methods: GLASSO
in [58], and the method in [60]. The two methods learn the
weighted signed graph. To quantify the strength of antagonistic
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Fig. 9. AUROC performance under polluted/corrupted data. AUROC (left) against sparsity of outlier ps under batch-mode pollution with sparse pollution;

(Middle-left) against batch size Mpatcn, under batch-mode pollution with sparse pollution at ps = 0.5. (Middle-right) against size of corrupted batch My,
under batch-mode pollution with [56]’s model. (Right) against sparsity of outlier ps under random-mode pollution.

ties, we consider the normalized score

|Ap-|le
I[ A+ +|Ap-le’

scoregL = (28)
such that Ap-, Ag+ denote the adjacency matrix of negative,
positive edges learnt, respectively. For ease of comparison,
these scores are normalized to the range [0, 1], where a smaller
(larger) value suggests more friendly (antagonistic) ties®.

Our first experiment aims at verifying the above
application of Algorithm 1 on synthetic data. We set
G ~SBM(2, N,log(N)/N,4log(N)/N) with N =100
nodes. The observation noise satisfies 02 =0.01 and we
consider generating M = 200 samples using the model in
(24) with « =0.8 and B =1I. For GLASSO, we pick the
regularization parameter as pgL = 1000, and for [60], we
pick pscL = 1000. Fig. 10 compares scorealg,scoreg, and
the average runtime against the portion of negative edges in
the ground truth graph where a portion of |E~|/|E| edges
are randomly flipped to negative, with 50 Monte-Carlo trials.
All algorithms detect the increased portion of antagonistic
ties in the ground truth signed graphs, as indicated by the
increasing detection scores as |[E~|/|E| — 1. Algorithm 1 has
a significantly lower runtime than other benchmarks.

Next, we apply Algorithm 1 to a US Senate rollcall dataset.
The dataset is taken from the 117th US Congress [available:
https://voteview.com], recording M = 949 rollcalls of votes
made by N =97 members. The M rollcalls are divided into
4 groups based on the attribute ‘vote question’ as: “On the
Nomination”, “On the Cloture Motion”, “On the Amendment”
and others. Each group is exemplified by rollcalls of different
nature, as shown in Table I. We postulate that the Senators’
networks exhibit different levels of antagonistic ties in each of
the group. For example, the opinion formation process on nom-
ination of government positions (“On the Nomination”) may

4We acknowledge that as the goal for Algorithm 1 is different from [58],
[60] by nature, it is impossible to make a completely fair comparison. Our
examples serve as a reference to demonstrate that the proposed detector for
antagonistic ties produce reasonable result with little computation overhead.
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Fig. 10.  Synthetic signed graph. (Left) Normalized scores of detecting an-

tagonistic ties against |[E~ |/|E|. (Right) Average runtime against |[E~|/|E|.

TABLE I
DETECTING ANTAGONISTIC TIES IN US SENATE DATASET. (LEFT)
EXAMPLES OF ROLLCALL DESCRIPTIONS IN EACH GROUP. (RIGHT)
NORMALIZED SCORES, scorepg1, scoregL, COMPUTED FROM THE
ROLLCALLS OF EACH GROUP (SEE BELOW). THE BRACKETED NUMBERS
ARE THE TOTAL COMPUTATION TIME FOR EACH ALGORITHM

On the Nomination (N): e.g., “Thomas J. Vilsack, of ‘ ‘ ‘ A ‘ o
Towa, to be Secretary of Agriculture”, “Rahm Emanuel, Algorithm 1
of Illinois, to be Ambassador to Japan”, ... (0.08sec) | 937|039 0.02]0.06
On the Cloture Motion (C): e.g., “Beth Robinson, [58], peL = 10 ‘
of Vermont, to be United States Circuit Judge for the (3969.92 sec.) ‘ 0.14 ‘ 0.18 ‘ 0.05 ‘ 0.10
Second Circuit”, “Douglas R. Bush, of Virginia, to be
an Assistant Secretary of the Army”, ... [58], poL = 150 ‘ 0.20 ‘ 025 ‘ 0.0 ‘ 0.06
On the Amendment (A): .g., “To establish a deficit- (586.48 sec.) | | |
neutral reserve fund relating to COVID-19 vaceine ad- 60 —300

istration and a public jen”, “In the [1%8”?3% ‘005‘001‘ 0.0 ‘ 0.0
nature of a substitute”, “To improve the bill”,
Others (0): e.g., “A bill to provide for reconciliation [60], s = 1000 ‘ 0.17 ‘ 0.22 ‘ 0.0 ‘ 0.07
pursuant to title IT of S. Con. Res. 57, “A resolution 124 28 Sec
impeaching Donald John Trump, President of the United 601, 1 — 2000
States, for high crimes and misdemeanors”, ... [ 1]1és16é sec.) ‘ 0.29 ‘ 0.37 ‘ 0.01 } 0.18

display more distrusts as opposed to the process on modifying
a bill (“On the Amendment”).

We process the data by assigning a score of +1,0, —1 for a
‘Yay’, ‘Abstention’, ‘Nay’ vote, respectively, and set the number
of clusters to K = 2 since there are two major parties. Table I
shows the normalized scores (28) computed from the 4 groups
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Fig. 11. Highland tribes network. (Left) The network: the red and grey

lines are negative and positive edges, and the R =5 rectangular nodes are
the excitation nodes selected. (Right) Score against trust parameter « € (0, 1)
[cf. (23)].

of rollcalls. Observe that for Algorithm 1, the normalized
K-means scores are significantly higher for the group with “On
the Nomination”, “On the Cloture Motion”. This indicates that
the graph filter processes involved are non low pass and shows
traces of antagonistic ties. This is reasonable due to the common
perception that these rollcalls are often contestable, even among
the Senators of the same political party. On the other hand, the
K-means score is lower for “On the Amendment”, indicating
the prevalence of low pass processes as the Senators tend
to reach consensus for these rollcalls. Meanwhile, the graph
learning methods are sensitive to the regularization parameters
PGL> ASGL-

Lastly, we apply Algorithm 1 to synthetic data gener-
ated from a real-world graph. Consider the highland-
tribes graph [available: http://konect.cc/networks/ucidata-
gama/] with N + R =16 agents and |ET|=29, |E~|=29
edges, from which we select R = 5 agents as stubborn agents.
We simulate the opinion dynamics by (23) and generate M =
15 samples with varying (dis)trust parameter o > 0. The num-
ber of the clusters in the graph is estimated as K = 2. Fig. 11
(right) shows the normalized scores of benchmark algorithms
against . Observe that the scores with Algorithm 1 and [60] are
bounded away from zero consistently regardless of «, indicating
the detection of antagonistic ties. Meanwhile, GLASSO [58]
fails to recognize the antagonistic ties when @ > 0.4. We spec-
ulate that this is due to the effects of low-rank excitation in the
synthetic graph signals.

3) Detecting Anomalies in Power Systems: Consider the
voltage phasor data on an IEEE-118 bus test grid [available:
https://zenodo.org/record/5816149]. The attack model is (27)
with sparse attack vector &, such that [8;], = —Ae/** with the
attack angle a; uniformly distributed in [0, 5°].

Fig. 12 shows the detection probability versus the attack
magnitude A € [0,3] and different number of attacked buses
|D;|. We compare Algorithm 1 (assumed K = 2) against the de-
tection method in [34] which requires knowledge of the network
topology. Although the power network is a man-made system,
its topology may not be correctly estimated when energized
[65]. As such, we evaluate the performance when the graph
topology is perturbed with 5% of random edge connection/
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Fig. 12. Detection probability versus FDI attack magnitude A;. We use

‘w/ err’ for [34] with perturbed topology, |D¢| is the no. of attacked buses.

disconnection. On the other hand, Algorithm 1 is a blind method
that is robust to topology error. For the experiment, the detec-
tion probability is averaged over 100 trials and Algorithm 1
is set to use 100 samples per detection. Our results demon-
strate that Algorithm 1 successfully detects FDIA events, and
its performance is comparable to [34], despite not relying on
topology information.

VII. CONCLUSION

This paper has initiated the study of a blind detection problem
for low pass or smooth graph signals. The problem is motivated
by the need to validate low-passness of graph signals before
they can be used in GSP pipelines such as graph topology
learning. We derive a detector that is inspired by the unique
spectral pattern manifested by low pass graph signals defined
on modular graphs and analyze their finite-sample complexity.
Lastly, we discuss the applications of the proposed detectors on
robustifying graph learning and anomaly detection in opinion
dynamics data, power system data. Future works include ex-
tending the current method to directed graphs, studying appli-
cations to other domains and performance analysis on general
modular graphs.

APPENDIX
A. Useful Lemmas

Below we state three useful results that will be instrumental
to the subsequent analysis in this appendix.

Lemma 1: [30, Lemma 3.1] For G ~SBM(K, N,r,p),
we have o =E[A]=ZPZ', where P=plx +rlglj
and Z € {0,1}V*K is the cluster membership matrix. More-
over, Doorm = 227 9712 and Loorm = I — Hrorm, Where
Dy = Z;V:1 ;. The eigenvectors that correspond to the
smallest K eigenvalues of Z,orm are given by

—1/2
Vi = Z (ZTZ) u, (29)
where U € RE*K is an orthogonal matrix.

Lemma 2: Let G ~SBM(K, N,r,p) with p>r >0 and
% +r> 3210%,&, let Vi, ¥k denote the columns of the first
K eigenvectors of Lorm, Zhorm- Then, with probability at least
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1 — 2/N, there exists an orthogonal matrix O € RE*X:

35/ K3log N
[V = Vi O |0 <V2|| sin ©(Viie, ¥ic )| < o f()

The proof is relegated to Appendix F. The conditions on
p, r, K pertain to the difference between inter- and intra-cluster
connection probabilities. The following lemma is obtained by
combining [67, Theorem 2.1] and Davis-Kahan theorem:

Lemma 3: If Ak g >0, there exists an orthogonal matrix
o k such that with probability at least 1 — 5/M,

PP RUIPN 2VK
lUkOk —Uk|r <[[sin®Uk,Uk)llr < 7 Eum

1
73 ABx
where c; is an absolute constant independent of N, M and

Ey :=2c¢1y/log M /M tr(C

y) + o’ (30)

B. Proof of Proposition 1

We first show that v; is a positive vector regardless of
the choice of GSO. When S= L, S = Lyom, it is know that
v = 1/\/N, v = D1/21/||D1/21||2 > 0, respectively; see
[68, p. 4-7]. When S= A, S = A,orm, We note that both ma-
trices are non-negative. The Perron-Frobenius theorem implies
v is a positive vector [69, Theorem 8.4.4].

Note that in all cases, the graph frequency A; which corre-
sponds to vy has a multiplicity of one. As such, to show that
v is the only positive eigenvector, it follows from the fact that
every vector orthogonal to a positive vector must have at least
one positive and negative element.

C. Proof of Proposition 2

For N € RN*M the K-means score (10) can be expressed

via searching for K centroid vectors 11, ..., € RM.
N
K(N) = min Z “min_||n, — nJ”Q 31)
ni, wﬁKeRkI 1 j=1,...,

Define the set

™M ={N e RN*M : no. of unique rows of N < K'} .

It is easy to observe that

K(N) = mingg oo [|N = N2 (32)
To bound K(V ), we invoke Lemma 2 and consider the popu-
lation eigenvector matrix ¥ Ok defined therein. Notice that as
Ve € B [cf. (29)] and Ok is a K x K orthogonal matrix,
we have Vi Ok € .%’%XK. By Lemma 2, the following holds
with probability at least 1 — 2/N,

K(Vk)=_min [[Vk — VI <|Vk - Vx|l
Ver ™

<(p(N - K))"'35°K?log N. (33)
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D. Proof of Theorem 1

To simplify notation, we assume without loss of generality
that Hﬁl — (ﬁi)+||1 < ||’l,l\,z + (—ﬁi)+||1 for any 1 =1,..., N.
Therefore, the positivity function is simplified to

Pos(u;) = [ui — ()4 |1

We proceed by bounding Pos(;) under different cases:
1) When Tgna = To: We have u; =v; >0 and

Pos (1) < [[a1 — il + [Jur = (w1) ||, = [t — w1, .

where we used |min{a,0} — min{b,0}| <|a —b| for any
a,b € R. For any 5 > 2, similarly we have:

Pos (u;) > [lu; —(u;) , [[1—[lu; — ujll, = co — [[a; — uyll;
where we have used the fact that for any j > 2, itholds u; = v/
for some 2 < j' < N.

2) When Tgng = T1: As H(S) is not 1-low pass, it holds

Pos (t1)> ||uy — |1 — will; > co — [[ur — uilf;

u1 +H1
since u; = v, for some 2 < j' < N. Meanwhile, there exists
Jj*€{2,..., N} such that u;» = v; > 0. We also bound

mln Pos (u;) <
=2,

i~ (@ )+H1

< Huj* - <uj*>+H1 g — el = e — el
(34)

From the above discussions, a sufficient condition for the

detector to be accurate, i.e., ’7A' = Tgnd, is
Co > 2max;—1 . N |[|[U; — ;1. (35)
Applying Lemma 3 with K =1 yields
max |w; — @l <2V°VNEy/A™  (36)

where E); is defined in (30) and the extra V/N is due to norm
equivalence. Rearranging terms conclude the proof.

E. Proof of Theorem 2

We proceed by bounding the sample complexity under dif-
ferent cases for Tgnd.

1) When Tgna = To: As H(S) is a K low pass graph filter, we
observe that U i = V Il for some permutation matrix 11 ) €
{0, 1} XK, _Define the orthogonal matrix O = ﬁKHKOK,
where O, o x are from Lemma 2, 3, respectively. It holds with
probability at least 1 —2/N — 5/M,

K(Ugk) < |Uk — Vi Okl?
<2|Uk —UkOk|3 +2|UxOk — Vi Ok|3
Exm\®  2450K3log N
< 16K +
( A > p(N - K)

2) When Tgnd = T1: As H(S) is not K low pass, the columns
of U i has at least one eigenvector from {vg1,...,UnN}.

To facilitate our analysis, we define the shorthand nota-
tions U = [Ur,..., U], Uy s = [uy,...,us] where r <s.

(37
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We also define the permutation function 7 :{1,...,N} —
{1,..., N} such that |h;| = |h(A;))|, where 7(4) is the index
of graph frequency for the ith largest frequency response’ in
H(S) and is well-defined under H2. Set

Phieh = {5

1<i<K,K+1<7()<N} (38)

to be the set of crossed frequencies which is non-empty under
End = 7-1

Let O € RE XK be an orthogonal matrix. From (32), we ob-
tain that K(VxO) = miny,cpnx |[Vic — MO"|%. Since
MO" € "%, we have K(VxO) = K(V). This indicates
that K-means score is invariant to multiplication by orthogonal
matrices. For any 7 < s with [r, s] C P"eh [cf. (38)],

VKO x) = /KO Ox)

:minME%ng HUKOK — M”F

> VK(Uk) ~ [[Ux — UgOk]|r
>\ /K(U,,) - |[Ux —UxOx|r.

(39)

By the definition of Pphieh U s consists of at least one vector
from {vk1,...,vn5}. From Hl, we have K(U, ;) > csgm.
It can be shown that (20) implies /cspm > WT‘/?E - Thus
applying Lemma 3 shows that the following lower bound holds
with probability at least 1 — 5/M,

N 23/2\/K
K(Uk) > | vcsem — —=—=—

E
A M

(40)

Collecting (37), (40) and observe that % = Tgnd is guaranteed
if (i) 0 upper bounds the RHS of (37), and (ii) 6 lower bounds
the RHS of (40). The proof is concluded.

E. Proof of Lemma 2

Let sin ©(Vg, ¥k ) be a diagonal matrix whose ith diago-
nal element is sin(cos~!(0;)) and o; is the ith singular value
of Vi ¥k. Notice that Zorm = I — Fhorm and Lnorm = I —
Aorm, we first apply the Davis-Kahan theorem [70] to bound
the subspace difference between Vi, ¥k :

. 2\/[(||14n rmva{n rm||2
[ sin©(Vi, Vi )l|r < )\dno,mo_ /\dm: ;@D
K K+1

where )\f{ rrm denotes the jth largest eigenvalue of .7,o,m. The-
orem 4 of [50] shows that when the minimum expected degree
of nodes satisfies din, ;v > 32log N, with probability at least
1 —2/N, it holds
||~Q{norm - Anorm||2 S 10

log(N)/dwin, N - 42)

We have dpinn = 7N(p;TK) —(

P 32log N+1
kTr2 N

p+r). The condition

guarantees  dmin, N > 32log N. By

SRecall that |hq| > -+ > |hy| are sorted in descending order.
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[30, p. 34-37], we have Aem =P
As such,

[sin©(Vi, V)|l r
- 20V K +/Tog N - 25K15\/log N
- r - VWN-K'
VI ) e VP
Finally, we observe that with probability at least 1 — 2/N,
IVk =V Ok|r

Horm __
and )‘K+1 =0.

(43)

35K15/log N

< V2| sinO(Vi, ¥ )||p < o V20BN
< V2| sin®(Vi, 7k)||r JWN=F
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