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Motivation
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[Source: Sapien Labs]

[Source: NETWORK MANAGEMENT]

» Graphs: Effectively depict data's spatial layout in diverse
fields like social, biology, transportation, and power
networks.

> GSP: A flexible tool that extends the concepts from classical
signal processing to graphs and makes inference of data.
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Multilayer social network [Source:

Multilayer protein networks [Source: [Zhao et al., 2016]]
[Hanteer and Rossi, 2019]]

» From single-way to multi-attribute data: Complex systems
are represented by multi-layer networks.

» Multi-way graph signals: E.g., opinion dynamics,
multi-dimensional diffusion, protein-protein interactions,

animal networks, and relations in image pixels.
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Product Graph Model

» Coupling graph: G¢ = (V¢ £C, A®) with V| =M
» Physical graph: G¢ = (V¢ £¢ A®) with [V¢ = N
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Adjacency matrix for generalized product graph G = (G¢, G°):
A=1® A% +AC® I + ;A% @ AC
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Multi-attribute Graph Filter and Signals.

A general multi-layer graph filter model®:
H(A%, A%) = 3 T¢ J'T:Co hij(A°Y @ (A%)
y®) = 1(A%, A%)x() + w()
» Multi-dimensional opinion dynamics v = (0,0, 1)
y® = lim x(t) = (Iyy — A° @ A%)"1x()
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» Diffusion Process v = (%7

Y& = (Iny — A @ Iy — Iy @ A% 1x(®)

!Not necessarily a polynomial of A.
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Product Graph Learning

Task: Given y(s), recover A%, A® or their spectral features.

Idea: many graph features are embedded in the spectra:
AC — VCAC(VC)T,AG — vGAG(VG)T
If V¢ VE are known, then
» Topology Reconstruction [Segarra et al., 2017]
minyc ze [lvec(A%)|1 + 4||A° — VEDiag(A®)(VE)T |2 ¢— similar for A°
s.t. |diag(A%)| < €1, A°1 > 1

» Centrality Estimation
take ¢ =S, €€ = v where Vs = v @V
see [Roddenberry and Segarra, 2021, He and Wai, 2022]
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Product Graph Learning - Algorithm
Step 1 Recover V¢, V¢ from covariance matrix?
C, = ElyO(y®)T] = (Ve VO)|H(A®, A% (Ve V) +0°I

with x(8), w(%) satisfying white noise conditions.

Step 2 Spectral-based methods for graph (feature) learning

(P1) Topology Reconstruction [segarra et al., 2017]
o g [[Vec(A%)[1 + 5[ A% — VEDiag(A®)(VE) T
s.t. |diag(A%)| < €1, A°1 > 1

min

(P2) Centra|ity Estimation [Roddenberry and Segarra, 2021, He and Wai, 2022]

& =8, &= ¢

= = <g
< where vix =V, @V,

Al: Assume magnitudes of frequency response |h(Af, Af)| are distinct.
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Exact Solution by NKD to step 1
» Calculate sample covariance's eigenvectors
& (1/5) S yP)T T EvD(ED)
s=1
> Columns of V can be expressed as Kronecker products
V=(VieVOI=[ Vie() ® Vas(y) )
> NKD? recovers (v¢, v¢) from v via SVD.

I

Corollary: Under A1, noiseless observations, and S — oo, the
NKD procedure exact recovers V¢, V¢,

» Further step: Gram-Schmidt (GS) to obtain the orthogonal matrices:

Ve =GS([Vf, ..., vsm]), V& =GS([v,. .., eml)

3[Van Loan and Pitsianis, 1993] Nearest Kronecker product decomposition
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Simplified Solution by Unfolding to step 1

Recover V¢, V¢ by unfolding* y = (y1;--- ; ym) € RVM:
> Set Y(5) = [yl(s), .. ,yM)] € RVxM
> C}I/ayer _ E[( Y(s))T y(s) ], C;,‘Ode — E[Y(s)(y(s))T]
> Estimate V¢ = EVD(C,*"), V¢ = EVD(C}°%)

Issues for unfolding:

> VC VC - V& VC if eigenvalues of CIayer C“°GIe are distinct,
and N
d o7 C G
P = ST S
j=1
- repeated eigenvalues are common even under Al.
» Sufficient condition for exact recovery: separable filter with
h(X€, \%) = hC(AC)hE(NE)

*Inspired from [Sandryhaila and Moura, 2014, Zhang et al., 2021], also used

recently in [Kadambari and Chepuri, 2021, Einizade and: Sardpuie, 2022}
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Experiment 1: Topology Reconstruction

41 =0.01: —e— NKD —e— Unfold Flatten —o— PGL
71 =0.33: -+#- NKD -+- Unfold Flatten -+- PGL
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~v1 J 0 — stronger inter-layer coupling of graph.
'NKD' recovers topology effectively regardless of v; robustly.
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'Unfold’ & 'PGL’ sensitive to ~;; 'Flatten’ fails consistently.

10/15



Experiment 2: Central Nodes Detection

41 = 0.01: —o— NKD H™ —e— Unfold H™
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» HP works well for both 'NKD' and 'Unfold’.

>

'NKD' achieves lower error rate with fewer samples in strong
coupling (71 = 0.01).

» 'Unfold’ method requires large samples with close eigenvalues

(H"™, v, = 0.01).
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Real Data: US Senate Roll Calls

District Judges

Circuit Judges
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Estimated coupling graph of topics G©

Estimated Senate topology G©

» State graph G¢ shows two clusters (Republican&Democratic).
» Coupling graph G® reveals strong connection between 'circuit

judges’ & fiscal’ topics.
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Conclusion

» Generalize product graph filter for multi-attribute signals.

» Develop inference algorithms for topology learning &
centrality detection.

» Study layer/node-wise unfolding and NKD for spectral
estimation leading to graph inference.

» Product graph learning based on NKD delivers more robust
performance.
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Thank you!
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