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Motivation

[Source: NETWORK MANAGEMENT] [Source: Sapien Labs]

▶ Graphs: Effectively depict data’s spatial layout in diverse
fields like social, biology, transportation, and power
networks.

▶ GSP: A flexible tool that extends the concepts from classical
signal processing to graphs and makes inference of data.
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Motivation

Multilayer protein networks [Source: [Zhao et al., 2016]]
Multilayer social network [Source:

[Hanteer and Rossi, 2019]]

▶ From single-way to multi-attribute data: Complex systems
are represented by multi-layer networks.

▶ Multi-way graph signals: E.g., opinion dynamics,
multi-dimensional diffusion, protein-protein interactions,
animal networks, and relations in image pixels.
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Product Graph Model

▶ Coupling graph: GC = (VC, EC,AC) with |VC| = M

▶ Physical graph: GG = (VG, EG,AG) with |VG| = N

Adjacency matrix for generalized product graph G = (GC,GG):

A = γ1I ⊗ AG + γ2AC ⊗ I + γ3AC ⊗ AG
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Multi-attribute Graph Filter and Signals.

A general multi-layer graph filter model1:

H(AC,AG) =
∑TG

i=0

∑TC

j=0 hij(A
C)j ⊗ (AG)i

y (s) = H(AC,AG)x (s) + w (s)

▶ Multi-dimensional opinion dynamics γ = (0, 0, 1)

y (s) = lim
t→∞

x(t) = (INM − AC ⊗ AG)−1x (s)

▶ Diffusion Process γ = (12 ,
1
2 , 0)

y (s) = (INM − AC ⊗ IN − IM ⊗ AG)−1x (s)

1Not necessarily a polynomial of A.
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Product Graph Learning

Task: Given y (s), recover AC,AG or their spectral features.

Idea: many graph features are embedded in the spectra:

AC = V CΛC(V C)⊤,AG = V GΛG(V G)⊤

If V C,V G are known, then
▶ Topology Reconstruction [Segarra et al., 2017]

min
λG,ÂG ∥vec(ÂG)∥1 + ρ

2
∥ÂG − V GDiag(λG)(V G)⊤∥2F

s.t. |diag(ÂG)| ≤ ϵ1, ÂG1 ≥ 1

←− similar for AC

▶ Centrality Estimation

take ĉG = v G
c , ĉC = v C

c where v̂i⋆ = v C
c ⊗ v̂ G

c

see [Roddenberry and Segarra, 2021, He and Wai, 2022]
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Product Graph Learning - Algorithm

Step 1 Recover V C,V G from covariance matrix2

Cy = E[y (s)(y (s))⊤] = (V C⊗V G)|H(ΛC,ΛG)|2(V C⊗V G)⊤+σ2I

with x (s),w (s) satisfying white noise conditions.

Step 2 Spectral-based methods for graph (feature) learning

(P1) Topology Reconstruction [Segarra et al., 2017]

minλG,ÂG ∥vec(ÂG)∥1 + ρ
2∥Â

G − V̂ GDiag(λG)(V̂ G)⊤∥2F
s.t. |diag(ÂG)| ≤ ϵ1, ÂG1 ≥ 1

(P2) Centrality Estimation [Roddenberry and Segarra, 2021, He and Wai, 2022]

ĉG = v̂ G
c , ĉC = v̂ C

c where v̂i⋆ = v̂ C
c ⊗ v̂ G

c

2A1: Assume magnitudes of frequency response |h(λC
j , λ

G
i )| are distinct.
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Exact Solution by NKD to step 1

▶ Calculate sample covariance’s eigenvectors

ĈS
y = (1/S)

S∑
s=1

y (s)(y (s))⊤ V̂ noisy = EVD(ĈS
y )

▶ Columns of V̂ can be expressed as Kronecker products

V̂ = (V C ⊗ V G)Π =
[
· · · vC

πC(i) ⊗ vG
πG(i) · · ·

]
▶ NKD3 recovers (v̂C

i , v̂
G
i ) from v̂noisy

i via SVD.

Corollary: Under A1, noiseless observations, and S → ∞, the
NKD procedure exact recovers V C,V G.

▶ Further step: Gram-Schmidt (GS) to obtain the orthogonal matrices:

V̂ C = GS([v̂ C
1 , . . . , v̂

C
NM ]), V̂ G = GS([v̂ G

1 , . . . , v̂
G
NM ])

3[Van Loan and Pitsianis, 1993] Nearest Kronecker product decomposition
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Simplified Solution by Unfolding to step 1

Recover V G,V C by unfolding4 y = (y1; · · · ; yM) ∈ RNM :

▶ Set Y (s) = [y (s)
1 , . . . , y (s)

M ] ∈ RN×M

▶ C layer
y = E[(Y (s))⊤Y (s)], Cnode

y = E[Y (s)(Y (s))⊤]

▶ Estimate Ṽ C = EVD(C layer
y ), Ṽ G = EVD(Cnode

y )

Issues for unfolding:

▶ Ṽ G, Ṽ C → V G,V C if eigenvalues of C layer
y ,Cnode

y are distinct,
and

Cnode
y =

N∑
j=1

vG
j (v

G
j )
⊤

M∑
i=1

|h(λCi , λGj )|2

- repeated eigenvalues are common even under A1.

▶ Sufficient condition for exact recovery: separable filter with
h(λC, λG) = hC(λC)hG(λG)

4Inspired from [Sandryhaila and Moura, 2014, Zhang et al., 2021], also used
recently in [Kadambari and Chepuri, 2021, Einizade and Sardouie, 2022].
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Experiment 1: Topology Reconstruction

▶ A = γ1I ⊗ AG + 2γ1AC ⊗ I + (1− 3γ1)AC ⊗ AG

▶ γ1 ↓ 0 → stronger inter-layer coupling of graph.

▶ ’NKD’ recovers topology effectively regardless of γ1 robustly.

▶ ’Unfold’ & ’PGL’ sensitive to γ1; ’Flatten’ fails consistently.
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Experiment 2: Central Nodes Detection

▶ Hexp works well for both ’NKD’ and ’Unfold’.

▶ ’NKD’ achieves lower error rate with fewer samples in strong
coupling (γ1 = 0.01).

▶ ’Unfold’ method requires large samples with close eigenvalues
(Hinv, γ1 = 0.01).
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Real Data: US Senate Roll Calls

▶ State graph GG shows two clusters (Republican&Democratic).

▶ Coupling graph GC reveals strong connection between ’circuit
judges’ & ’fiscal’ topics.
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Conclusion

▶ Generalize product graph filter for multi-attribute signals.

▶ Develop inference algorithms for topology learning &
centrality detection.

▶ Study layer/node-wise unfolding and NKD for spectral
estimation leading to graph inference.

▶ Product graph learning based on NKD delivers more robust
performance.
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Thank you!
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