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ABSTRACT

This paper considers learning a product graph from multi-attribute
graph signals. Our work is motivated by the widespread presence
of multilayer networks that feature interactions within and across
graph layers. Focusing on a product graph setting with homogeneous
layers, we propose a bivariate polynomial graph filter model. We
then consider the topology inference problems thru adapting existing
spectral methods. We propose two solutions for the required spec-
tral estimation step: a simplified solution via unfolding the multi-
attribute data into matrices, and an exact solution via nearest Kro-
necker product decomposition (NKD). Interestingly, we show that
strong inter-layer coupling can degrade the performance of the un-
folding solution while the NKD solution is robust to inter-layer cou-
pling effects. Numerical experiments show efficacy of our methods.

Index Terms— graph signal processing, product graph learning,
multi-attribute graph signals, network inference

1. INTRODUCTION
In recent years, there has been a growing trend in data science to
develop tools for learning and making inference from signals or data
observed on networks. The latter is also known as graph signals
which form the subject of investigation in the emerging field of graph
signal processing (GSP). Through modeling real-world networks as
graphs and encoding the network data as filtered graph signals, an
emerging trend is to develop tools for learning the latent graph topol-
ogy from these network data; see [1, 2] and the references therein.
These tools have widespread applications in the studies of social,
financial, and biology networks [3].

Previous works on topology learning with GSP models have
focused on mono-layer networks that consist of a single network
‘layer’, and the tools developed are applicable to single-way data.
However, this may not yield a faithful model for many complex sys-
tems since networks and graphs do not live in isolation. Instead,
many networked systems are better described by multi-layer net-
works featuring coupling interactions within and across network lay-
ers. Examples include: opinion dynamics on correlated topics [4],
multi-dimensional diffusion [5], protein-protein interactions [6], an-
imal networks [7], and relations in image pixels [8], etc. Observa-
tions made on these complex systems are usually generated from
two or more coupled networks, and they give rise to multi-attribute
observations on nodes, i.e., multi-way graph signals. Naturally, the
graph structure embedded in these network data shall be treated us-
ing a multilayer graph model as they can not be captured by simple
individual networks or flattened networks without structure.

This paper is motivated by the above to develop an inter-layer
coupling aware GSP framework for learning an accurate graph struc-
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Fig. 1. (Left) Physical graph GG and coupling graph GC, together
with the overall product graph G. (Right) Interaction graph GI with
different set of parameters γ.

ture from multi-way data. As a special case, we focus on modeling
a product graph [9] with homogeneous graph layers. We also de-
velop the corresponding inference algorithms. In light of this, we
contribute to both modeling and algorithm aspects in GSP with:

• We adopt a general product graph filter for modeling multi-
attribute (a.k.a. multi-way) graph signals. The model uses a
bivariate polynomial graph filter to describe interactions over the
physical and coupling graphs. We show that it encompasses a
number of common dynamics on multilayer networks.

• We develop inference algorithms for topology reconstruction and
blind centrality detection in learning the product graph model.
Our development relies on an observation that the eigenvectors
of graph signals’ covariance can be written as Kronecker product
of respective eigenvectors of coupling and physical graphs. Lever-
aging this observation, we suggest spectral methods by proposing
two solutions based on the layer/node-wise unfolding and nearest
Kronecker product decomposition (NKD). We compare the two
solutions by analyzing the effects of inter-layer coupling and show
that NKD yields an exact solution under milder assumptions.

Lastly, we present numerical experiments on synthetic and real data
to corroborate with our analysis. The experiments highlight the ef-
fects of inter-layer coupling strengths on topology inference.

Related Works. The closest works to ours are [10, 11] which stud-
ied product graph learning from multi-way graph signals focusing
on a smoothness condition defined with the Cartesian product graph.
Such conditions restricted the application of these techniques to a
special form of coupling mechanism in the multi-way data. Our
general product graph filter model relaxes these restrictions. Be-
sides graph learning, [12,13] proposed a time-vertex GSP frameworkIC
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modeling the temporal evolution of graph signals. These models can
be regarded as a special case of our model where the coupling graph
is fixed as a path graph. Moreover, [14–16] studied models for the
generic multi-way GSP with possibly heterogeneous graph layers.
While the graph model is considerably more generic, these works
focused on simple graph filters, which do not account for a number
of inter-layer coupling mechanisms. Lastly, we note that [17] studied
an alternative multigraph GSP model without multi-way data. To our
best knowledge, the current paper introduces the first product graph
model with general inter-layer coupling accompanied by a suite of
topology inference algorithms.

2. MULTI-ATTRIBUTE GRAPH SIGNALS

This section introduces a generative model for multi-attribute graph
signals inspired by network dynamic processes on multiplex graphs
with homogeneous graph layers. In particular, our development in-
volves a product graph model [9] and a general multi-dimensional
graph signal/filter model based on the former.

Product Graph Model. The center of our study is a product graph
G = (GC,GG) formed by two undirected graphs, denoted respec-
tively as GC = (VC, EC,AC), GG = (VG, EG,AG) with |VC| = M ,
|VG| = N . Note that AC, AG are weighted adjacency matrices as-
sociated with the respective graphs of the edge sets EC ⊆ VC × VC,
EG ⊆ VG × VG. We adopt the interpretation of G as a multi-layer
graph such that each node in VG corresponds to a physical entity,
e.g., individual on a social network, etc., and each node in VC cor-
responds to a layer/attribute of these physical entities. In this way,
GG will be referred as the physical graph, while GC is the coupling
graph between layers/attributes; see Fig. 1 (left).

Compared to conventional single graph layer models, an im-
portant feature of G is that it explicitly models inter-layer coupling
where all N nodes co-exist in the M interacting layers. It is then
instrumental to define the interaction graph GI with the node set
VI = VC × VG. Notice that |VI| = NM and the edge set of GI can
then be encoded into the adjacency matrix:

AI = γ1I ⊗AG + γ2A
C ⊗ I + γ3A

C ⊗AG, (1)

where γ = (γ1, γ2, γ3) ≥ 0 satisfying
∑3

i=1 γi = 1 are the cou-
pling parameters of the generalized product graph, and ⊗ denotes
Kronecker product. Different combinations of γ can lead to different
interaction patterns among the nodes in V [18]. For example, with
γ = ( 1

2
, 1
2
, 0), AI describes the Cartesian product graph and the ma-

trix is also known as the supra-adjacency matrix; with γ = (0, 0, 1),
AI describes the Kronecker product graph; with γ = ( 1

3
, 1
3
, 1
3
), AI

describes the strong product graph; see Fig. 1 (right).

Multi-attribute Graph Signals. We concentrate on modeling
multi-attribute graph signals living on GI where the graph filter is
induced by the graph factors AC,AG and takes an excitation signal
as its input. For example, the filter can be a function of AI. We
consider a general formulation of multi-layer graph filter [19]:

H(AC,AG) =
∑TG

i=0

∑TC

j=0 hij(A
C)j ⊗ (AG)i, (2)

where hij ∈ R are the filter coefficients and TG, TC ∈ Z+ ∪ {∞}
are the orders of the bivariate filter polynomial. The multi-attribute
(a.k.a. multi-way) graph signals are then modeled as:

y(s) = H(AC,AG)x(s) +w(s), (3)

where s ∈ N denotes the sample index, x(s),w(s) ∈ RNM are
the excitation signals and observation noise, respectively. Note that
y = (y1; · · · ;yM ) ∈ RNM whose mth block, ym, corresponds to

observations on the nodes {(m, i) ∈ VI : i ∈ VG} and the graph
signals have been organized in a layer-by-layer fashion.

It is obvious that for all coupling parameters γ, any polynomial
of AI can be written as (2). Notably, it is common [5] to use the
supra-adjacency matrix, AI with γ = ( 1

2
, 1
2
, 0), to describe inter-

actions in a multi-layer graph, and subsequently consider the poly-
nomial of AI as the graph filter. However, this is not sufficient to
describe certain interactions on G, e.g., a polynomial of AC ⊗ AG

cannot be expressed1 as a polynomial of AI with γ = ( 1
2
, 1
2
, 0).

We conclude this section by showcasing two example dynamic
processes to illustrate the generality of our graph filter model:

Example 1. Consider the Friedkin-Johnsen multi-dimensional opin-
ion dynamics [4, 20]. At time t ≥ 0 and the sth discussion, the
multi-dimensional opinions for agents in VG evolve as

x(t+ 1) = (AC ⊗AG)x(t) + x(s) (4)
such that the mth block of x(t) represents the opinions of N agents
on the mth topic. The weighted adjacency matrices AC,AG repre-
sent the logical dependencies between the M topics, and the mutual
trusts between the N agents, respectively. They are properly scaled
such that the vector (INM − AC ⊗ AG)1 > 0 represents the self
trusts of each agent on the topic. Moreover, x(s) is the initial belief
of the agents. Under the above premises, we have

y(s) = lim
t→∞

x(t) = (INM −AC ⊗AG)−1x(s), (5)

where we note that (INM − AC ⊗ AG)−1 is a special case of (2)
since the latter is a function of AI with γ = (0, 0, 1).

Example 2. The diffusion process in [5] describes dynamics such as
social contact, epidemic, etc., on a multi-layer graph. In particular,
with the excitation x(s), the states of nodes at time t evolve as:

dx(t)
dt

= −x(t) +
(
AC ⊗ IN + IM ⊗AG

)
x(t) + x(s). (6)

With properly scaled AC,AG, the above has a unique equilibrium:

y(s) = (INM −AC ⊗ IN − IM ⊗AG)−1x(s). (7)

where we note that (INM −AC ⊗ IN − IM ⊗AG)−1 is a special
case of (2) since the latter is a function of AI with γ = ( 1

2
, 1
2
, 0).

Graph filter models in the form of (2) may also be found in other
data scenarios such as the graph causal processes [21]. These models
may be based on other types of interaction graphs GI such as strong
product, but they can nevertheless be covered by (2).

3. PRODUCT GRAPH LEARNING
We aim to infer the product graph model through observing the
multi-attribute graph signals in (3). We concentrate on learning the
coupling and physical graphs AC,AG. Our idea is to apply spectral
methods with reliable performance regardless of the graph filter (2).

To fix ideas, we denote the eigenvalue decompositions (EVDs)
for the adjacency matrices by:

AC = V CΛC(V C)⊤,AG = V GΛG(V G)⊤, (8)

where V C,V G are orthogonal and ΛC,ΛG are diagonal matrices.
Without loss of generality, the eigenvalues are sorted in decreasing
order. For example, the ith column vector of V G, denoted vG

i , corre-
sponds to the ith largest eigenvalue (λG

i ) in AG. We assume that:

H1. For any i = 1, . . . , N , j = 1, . . . ,M , the magnitudes of fre-
quency response |h(λC

j , λ
G
i)| have distinct values, where we defined

h(λC, λG) :=
∑TG

i=0

∑TC

j=0 hij(λ
C)j(λG)i according to (2).

1Note that the issue boils down to the non-existence of a polynomial h̃(·)
such that h(ab) = h̃(a+ b) for all h(·), a, b.
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The above assumption holds for cases when the graph filter is a func-
tion of AI where AC,AG have distinct eigenvalues. Consequently,
the EVD of the graph filter (2) is derived as (cf. [14]):

H(AC,AG) = (V C ⊗ V G)H(ΛC,ΛG)(V C ⊗ V G)⊤, (9)

such that H(ΛC,ΛG) is a diagonal matrix. Under standard white
noise conditions for x(s),w(s), i.e., both are zero-mean and satisfy
E[x(s)(x(s))⊤] = I , E[w(s)(w(s))⊤] = σ2I , the graph signal co-
variance Cy = E[y(s)(y(s))⊤] can be derived as:

Cy = (V C ⊗ V G)|H(ΛC,ΛG)|2(V C ⊗ V G)⊤ + σ2I. (10)

Eq. (10) makes an important observation about the covariance ma-
trix Cy . When σ = 0, the eigenvectors of Cy are given by the
columns of V C ⊗V G. We will demonstrate in §3.1 that V C,V G can
be retrieved by decomposing the eigenvectors of Cy .

Suppose for now that the matrices V̂ C, V̂ G with possibly per-
muted columns of V C,V G are given, we can recover the graph topol-
ogy and/or detect central nodes in GC,GG through adapting the spec-
tral methods developed in several existing works. In particular:
P1. Topology Reconstruction. It is shown in [22] that graph topolo-
gies can be reconstructed from the spectral template of graph shift
operator (GSO). For example, the following problem recovers AG:

minλG,ÂG ∥vec(ÂG)∥1 + ρ
2
∥ÂG − V̂ GDiag(λG)(V̂ G)⊤∥2F

s.t. |diag(ÂG)| ≤ ϵ1, ÂG1 ≥ 1, (11)

where ρ > 0, ϵ > 0 are regularization parameters, and vec(·) is the
vectorization operator. Similar formulation can be applied for AC.
P2. Centrality Estimation. It is observed [23–25] that eigen-
centrality vector can be inferred from graph signals under mild
conditions. Their idea can be adapted for product graphs by noting
vC
1 ⊗ vG

1 is the only positive eigenvector in Cy . Under the premise
that the latter can be decomposed (cf. §3.1), we propose:

ĉG = v̂G
c, ĉ

C = v̂C
c where v̂i⋆ = v̂C

c ⊗ v̂G
c (12)

and i⋆ = argmini P(v̂i) with P(x) := min{∥x − (x)+∥, ∥x +
(−x)+∥}, (x)+ := max{0,x}, and P(x) = 0 iff x is all-positive
or all-negative. Notice v̂i denotes the ith eigenvector of Cy .

3.1. Recovering VC,VG from Cy

Our remaining task is to recover the eigenvectors in V C,V G individ-
ually from observed data y(s). For simplicity, we consider the same
conditions leading to (10) with σ = 0 and propose two solutions.
Exact Solution by NKD. Observe that the diagonal entries in
|H(ΛC,ΛG)|2 of (10) may not be sorted in descending order. Ap-
plying EVD on Cy thus produces the eigenvector matrix:

V̂ = (V C ⊗ V G)Π =
[
· · · vC

πC(i) ⊗ vG
πG(i) · · ·

]
, (13)

where Π is a permutation matrix that orders the columns of V C ⊗
V G according to the magnitude of frequency response. For any i ∈
{1, . . . , NM}, πC(i), πG(i) are indices of eigenvectors for V C,V G

of the ith highest frequency response in |H(ΛC,ΛG)|2, i.e., v̂i.
The structure illustrated in (13) indicates that every column vec-

tors of V̂ can be written as a Kronecker product. To this end, we
observe the classical result adapted from [26, Theorem 2.1].

Proposition 1. Consider M ∈ RMN×PQ, A ∈ RM×P , B ∈
RN×Q. If M = A⊗B, then R(M) = vec(A)vec(B)⊤, where

R(M) =

 M1

...
MP

 , Mi =

 vec(M1,i)
⊤

...
vec(MM,i)

⊤

 , i = 1, . . . , P.

Algorithm 1 Learning Product Graph (P1 and/or P2)

1: INPUT: Set of S observed graph signals {y(s)}Ss=1.
2: Evaluate ĈS

y = (1/S)
∑S

s=1 y
(s)(y(s))⊤ and compute its

eigenvectors as V̂ noisy = EVD(ĈS
y ).

3: For any i = 1, . . . , NM , solve the NKD problem for R(v̂noisy
i )

[cf. (14)] to obtain the pair (v̂C
i , v̂

G
i ).

4: Perform Gram-Schmidt (GS) to obtain the orthogonal matrices:

V̂ C = GS([v̂C
1, . . . , v̂

C
NM ]), V̂ G = GS([v̂G

1, . . . , v̂
G
NM ]). (15)

5: Apply the methods in P1 for topology reconstruction (11) or P2
for centrality detection (12).

Note M has been partitioned into N × Q blocks and Mi,j is the
(i, j)th block. Subsequently, A,B can be uniquely recovered (up to
a scalar factor) through a suitable decomposition of R(M).

When M ̸= A⊗B, e.g., with noisy observations, [26] consider the
nearest Kronecker product decomposition (NKD) problem:

minA,B,α ∥R(M)− α vec(A)vec(B)⊤∥2F
s.t. ∥vec(A)∥ = 1, ∥vec(B)∥ = 1,

(14)

which can be solved by finding the top singular vectors of R(M).
Proposition 1 shows that vC

πC(i),v
G
πG(i) can be recovered by

applying NKD on R(v̂i) from (13). Consequently, collecting the
NKD outputs on R(v̂i) for all i forms two matrices whose columns
are permuted and repeated copies of the columns of V C,V G. This
suggests applying the Gram-Schmidt procedure on these matrices
[cf. (15)] for estimating V C,V G; see Algorithm 1. The algorithm
returns an exact solution under H1 and other conditions:

Corollary 1. Under H1 and noiseless observations (σ = 0) with
S → ∞, Algorithm 1 recovers the columns of V C,V G.

We remark that for P2, one may skip step 4 of Algorithm 1 to obtain
i⋆ = argmini Pos(v̂

noisy
i ) in (12) and thus the pair (v̂C

i⋆ , v̂
G
i⋆). In

this way, H1 can be further weakened to guarantee exact recovery.

Simplified Solution by Unfolding. We conclude the section by
proposing and analyzing an alternative to NKD in Algorithm 1 for
estimating V C,V G. The alternative solution is inspired by [14, 27]
through unfolding the multi-attribute graph signals into layer-wise
and node-wise matrices. Interestingly, we show that this simplified
design can be as effective as NKD, but only when the frequency re-
sponse of the product graph filter (2) is separable [13].

To this end, we denote the unfolding of y(s) in (3) as Y (s) =

[y
(s)
1 , . . . ,y

(s)
M ] and consider C layer

y = E[(Y (s))⊤Y (s)], Cnode
y =

E[Y (s)(Y (s))⊤]. Their resultant eigenvector matrices Ṽ C =

EVD(C layer
y ), Ṽ G = EVD(Cnode

y ) can then be used in lieu of
the estimates in step 4 of Algorithm 1. The following proposition
analyzes the covariance matrices:

Proposition 2. Under H1. Assume that the excitation x(s) is zero-
mean satisfying E[x(s)(x(s))⊤] = I and w(s) = 0. It holds:

C layer
y =

∑M
i=1 v

C
i (v

C
i )

⊤ ∑N
j=1 |h(λ

C
i , λ

G
j)|2,

Cnode
y =

∑N
j=1 v

G
j(v

G
j)

⊤ ∑M
i=1 |h(λ

C
i , λ

G
j)|2.

(16)

The proof can be found in https://arxiv.org/abs/2211.00909. To gain
insight, we focus on node-wise covariance Cnode

y whose eigenvec-
tors Ṽ G correspond to V G iff the eigenvalues

∑M
i=1 |h(λ

C
i , λ

G
j)|2 are

distinct. However, the scenario of repeated eigenvalues is common
for Cnode

y when h(λC
i , λ

G
j) = h(λC

iλ
G
j), i.e., graph filter with γ =

(0, 0, 1) (interaction graphs). For example, when h(λC
i , λ

G
j) = eλ

C
iλ

G
j
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Fig. 2. Topology Reconstruction. F1 score against (Left) sample
size S with N = 10; (Right) graph size N with S = 1000.

with the spectrum as {−1, 1, 2} for GC, then Cnode
y has repeated

eigenvalues if {0,−1.27} are in the spectrum of GG.
On the other hand, a sufficient condition for Cnode

y to admit dis-
tinct eigenvalues hinges on the separable filter property [13]. Con-
cretely, we need h(λC, λG) = hC(λC)hG(λG) for all λC, λG. For ex-
ample, when h(λC

i , λ
G
j) = e

1
2
(λC

i+λG
j), the interaction graph is free

of the direct Kronecker product. In this case, the eigenvectors of
C layer

y ,Cnode
y serve as good surrogates for V C,V G, respectively.

4. NUMERICAL EXPERIMENTS
Synthetic Data. We consider graph filters that are based on AI

in (1) with the parameters γ = (γ1, 2γ1, 1 − 3γ1). As γ1 ↓ 0,
the interaction graph has strong inter-layer coupling of Kronecker
product form. We fix GC to be the tree graph in Fig. 1 with M = 3
where AC is the unweighted adjacency matrix; while AG will be the
unweighted adjacency matrix for GG to be determined below.
Example 1: Topology Reconstruction. This example examines
the performance of product graph topology reconstruction (P1). We
generate GG as an Erdos-Renyi graph with connection probability of
p = 0.4. We benchmark the proposed ‘NKD’ based Algorithm 1
against ‘Unfold’ which estimates Ṽ C, Ṽ G from the layer-wise/node-
wise unfolded graph signals; ‘PGL’ refers to the product graph learn-
ing method based on smoothness of layer-wise/node-wise unfolded
graph signals in [10]; ‘Flatten’ refers to applying [22] directly to
Cy . For the SpecTemp problem (11) in Algorithm 1, ‘Unfold’, and
‘Flatten’, we take ρ = 40, ϵ = 10−6 and solve (11) by cvx.

We consider synthetic data generated from (3) with the graph
filter given by H(AC,AG) = eτA

I

, where AI is parameterized by
γ1 ∈ [0, 1

3
] as described. We also set τ = 1/maxi di with di =∑N

j=1 A
I
ij . Excitation and noise signals satisfy x(s) ∼ N (0, I),

w(s) ∼ N (0, 0.01I). Fig. 2 compares the performance of topology
reconstruction in terms of the F1 score against the sample size S
and graph size N . We assume known γ1 and evaluate the F1 scores
by comparing the ground truth to ÂI reconstructed by (1) using the
estimated AC,AG. We observe that ‘NKD’ recovers the graph topol-
ogy for a wide range of sample sizes and graph sizes, regardless of
the coupling parameter γ1. Meanwhile, ‘Unfold’ and ‘PGL’ are sen-
sitive to γ1 – they perform better than Algorithm 1 when γ1 = 1

3
,

but their performances degrade noticeably when γ1 = 0.01. In all
cases, ‘Flatten’ fails to estimate the graph topology.
Example 2: Central Nodes Detection. The next example exam-
ines the performance of central node detection (P2). We focus on
detecting the central nodes of GG using (12), where GG is generated
as a core-periphery graph [28]. The node set VG = {1, . . . , N} is
partitioned into VG

cr = {1, . . . , 10}, VG
pe = VG\VG

cr. For every pair
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Fig. 3. Central Nodes Detection. Error rate against (Left) sample
size S with N = 80; (Right) graph size N with S = 5MN .

Fig. 4. US Senate Rollcalls Data. (Left) Estimated Senate topology
GG color coded by the two communities found by spectral clustering
on AG. (Right) Estimated coupling graph of the topics of rollcalls.

(i, j) ∈ VG × VG, edges are assigned randomly with probability 1 if
i, j ∈ VG

cr; with probability 0.2 if i ∈ VG
cr, j ∈ VG

pe; with probability
0.05 if i, j ∈ VG

pe. Our goal is to detect the 10 nodes in VG
cr based on

the observed multi-attribute graph signals. We focus on comparing
the proposed ‘NKD’ based Algorithm 1 with ‘Unfold’ which esti-
mates Ṽ C, Ṽ G from the node-wise unfolded graph signals.

We consider synthetic data modeled after (3) with two graph
filters: (a) Hinv(AC,AG) = (I − τ1A

I)−1, (b) Hexp(AC,AG) =

eτ2A
I

with τ1 = 1/maxi di, τ2 = 10τ1. We set x(s) ∼ N (0, I),
w(s) ∼ N (0, 0.01I). Fig. 3 compares the error rate in identify-
ing the central nodes VG

cr as top-10 central nodes (12). As seen,
‘NKD’ delivers lower error rate with smaller number of samples for
the strong coupling scenario (γ1 = 0.01). The result corroborates
with Proposition 2 as the covariance with node/layer-wise unfolded
signals have close (or repeated) eigenvalues, significantly increasing
the sample complexity in eigenvector estimation.
Real Data: US Senate Roll Calls. We apply Algorithm 1 to recon-
struct the topology (P1) from the 113th-116th US Senate rollcalls
[available: https://voteview.com/data]. We first apply NMF [29] to
perform topic modeling on rollcalls’ descriptions to get M = 4 top-
ics. Then, we infer a product graph with M = 4 layers and N = 50
nodes modeled by the state that the Senators represent. Fig. 4 shows
the learnt graph topology from S = 101 samples through applying
Algorithm 1. The estimated topology is reasonable: the state graph
GG identifies the Republican and Democratic states as two clusters,
and the coupling graph GC shows a strong connection between topics
on ‘circuit judges’ and ‘fiscal’.
Conclusions. This paper considered the problem of learning from
multi-attribute graph signals by proposing a general product graph
filter model and developing its inference algorithms. Future works
include analyzing the sampling complexity of Algorithm 1 and
studying the effects of layer-wise/node-wise unfolding of graph
signals on sampling complexity or identifiability.
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