
LEARNING MULTIPLEX GRAPH WITH INTER-LAYER COUPLING

Chenyue Zhang, Hoi-To Wai

Department of SEEM, The Chinese University of Hong Kong, Shatin, Hong Kong SAR of China

ABSTRACT

In many real-life systems, the interactions among entities are
complex and varied. This necessitates the use of a multiplex graph
model with heterogeneous layers of graphs to effectively describe
these interactions. The current paper focuses on incorporating high-
order relations, specifically inter-layer couplings or connections, in
multiplex graph learning. Through developing a high-order smooth-
ness criterion, we propose an algorithm that integrates inter-layer
connections to perform inference from multi-attribute graph signals.
We show that it is essential to consider high-order interactions in
the inference process. We validate our claims through numerical
experiments, demonstrating their efficacy in capturing the intricate
relationships within multiplex networks.

Index Terms— graph signal processing, multiplex graph learn-
ing, multi-attribute graph signals, smooth graph signals

1. INTRODUCTION

In recent years, there has been a rising interest in machine learning
and signal processing focusing on graph-based modeling. Methods
for extracting information such as graph topology, centrality, etc.,
from network data have found applications in science and business
applications. This has led to the emergence of studies on graph sig-
nal processing (GSP) which extend traditional signal processing on
time-domain to irregular (graph) data domains. A key concept of
GSP on data science involves the abstraction of network data as
graph signals generated from graph filters excited by external influ-
ences. Equipped with such model, a notable trend is the development
of graph learning methods for uncovering the latent graph topology
from network data, as outlined in [1,2] and related references. These
methods have applications spanning the analysis of social dynamics,
financial systems, power systems, and biological networks [3].

Prior research on graph topology learning using GSP models
have primarily focused on single layer networks [1, 2], where sig-
nals are represented as graph nodes connected by a single type of
edges. However, real-world network data often exhibit multifaceted
or multi-way interactions [4]. Their corresponding networked sys-
tems are marked by the heterogeneity of their connections, which
can be represented as multiplex graphs. As multiplex graph com-
prises of inter-connected layers of graphs with distinct structures,
such configuration encompasses coupling interactions both within
individual layers and across multiple network layers.

Inter-layer coupling across network layers often plays a cru-
cial role in real-world network systems. For example, in cyber-
physical systems, a failure in the physical-resource network can im-
pact the computational-resource network [5]. Similarly, in supra-
diffusion dynamics, inter-layer coupling substantially influences dif-
fusion rates [4]. Additionally, it plays a crucial role in understanding
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synchronization patterns and stability in multiplex oscillators [6].
Other examples, such as multi-dimensional opinion dynamics on
correlated topics [7], protein-protein interactions [8], animal net-
works [9], and image pixel relations [10], underscore the signifi-
cance of coupling interactions within individual layers and across
multiple network layers in various dynamic phenomena. Attempt-
ing to capture or learn these systems by treating them with a simple
graph model, without taking into account their inter-layer coupling
structure, may miss out on these essential properties.

This paper addresses the challenge of learning the inter-coupling
topology in multiplex networks. Our contributions span from the
fundamental aspect of graph signals modeling to the algorithm as-
pect of developing tractable inference algorithms, as summarized:

• We propose a multiplex graph filter model for modeling multi-
attribute graph signals. This model incorporates distinct nonlin-
ear intra-layer and inter-layer coupling dynamics in the form of a
multinomial function. We demonstrate that it covers a wide range
of common dynamics observed in multiplex networks.

• We develop a high-order smoothness total variation (TV) criterion
through approximating the multiplex filter by a composition of low
pass graph filters on high-order graph shifts. The new TV crite-
rion allows for fitting the graph signals stemmed from the unique
dynamics on multiplex networks characterized by coupling both
across and within layers.

• We derive an alternating optimization (AO) procedure for learn-
ing the multiplex graph model through the proposed smoothness
metric. We show that the subproblems in the AO procedure can
be solved efficiently as thru reduction to lower dimensional graph
learning problems.

Finally, we present numerical experiments to support our claims.
Our results underscore the importance of treating the coupling ef-
fects of graph signals in multiplex graph learning.
Related Works. The studies of graph signal processing with mul-
tilayer graph are relatively rare. The closest work to ours is [11]
which proposed a tensor GSP model for multilayer graph. How-
ever, [11] focused on graph filters with a single shift operator that
do not consider distinct inter-layer coupling dynamics, nor do they
study multiplex graph learning method. On the other hand, there has
been growing interests in GSP for product graphs, which is a spe-
cial case of multiplex graphs but with homogeneous layer-graphs.
This stemmed from the series of works [12–15] for modeling time-
vertex data. Recent works consider the product graph learning prob-
lem via exploring the smoothness criterion [16, 17], spectral tem-
plate [18], and spectral methods with emphasis on the inter-layer
coupling effects [19]. In comparison, our work tackles the multiplex
graph learning problem and suggests insights on how to model the
corresponding graph data with respect to a multiplex graph model.

Other than the signal processing community, numerous papers in
network science [20, 21], have delved into uncovering hidden struc-
tures within multiplex networks. Aspects such as centrality and com-
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munity detection that are catered for multiplex graph have been con-
sidered, also see [22]. Many of these papers assume prior knowledge
of the graph topology, while our work focuses on the inverse prob-
lem of learning the multiplex graph topology.

2. SIGNAL MODEL

Multiplex Graph. We consider a multiplex graph with L layers that
is denoted by the triplet G = ⟨V, E ,GC⟩. The set V with |V| = N
represents the set of nodes. The collection E = (E1, . . . , EL) de-
scribes L sets of edges between the nodes in V . For each ℓ, the
edge set Eℓ = {(vi, vj) : vi ̸= vj , vi, vj ∈ V} induces the ℓth
layer-graph denoted by Gℓ = ⟨V, Eℓ⟩. Meanwhile, GC = ⟨[L], EC⟩
with the layer set [L] = {1, . . . , L} describes the coupling graph
consisting of the coupling edges between a node and its clone in the
layer-graphs. We let Aℓ ∈ RN×N , C ∈ RL×L be the (weighted)
adjacency matrix of Gℓ, GC , respectively. For simplicity, these adja-
cency matrices are assumed to be symmetric.

It is convenient to describe G using a simple (single-layer)
graph. We define the set of supranodes at the ℓth layer-graph
Vℓ := {(v, ℓ) : v ∈ V} and the corresponding edge set Eℓ =
{((vi, ℓ), (vi, ℓ)) : (vi, vj) ∈ Eℓ}. Note that Vℓ, ℓ ∈ [L] consists
of ‘clones’ of the nodes in V at different layers. Subsequently, the
intra-layer graph that consists of NL supranodes is taken as the
union graph GL = ⟨V,EL⟩ with V = ∪L

ℓ=1Vℓ, EL = ∪L
ℓ=1Eℓ.

The coupling graph can be similarly extended as GC = ⟨V,EC⟩
with EC = {((v, ℓ), (v, ℓ′)) : v ∈ V, (ℓ, ℓ′) ∈ EC}. Observe that
both GL, GC are simple graphs defined on NL supranodes. We
define their adjacency matrices respectively as

AL := blkdiag(A1, . . . ,AL), AC := C ⊗ IN , (1)

where the block diagonal elements of AL are in order A1, . . . ,AL

and ⊗ is the Kronecker product. Moreover, a common approach [4]
to encode multiplex graphs is via the supra-adjacency matrix:

A := AL +AC . (2)

The simple graph induced by the supra-adjacency matrix A effec-
tively treats every (intra-layer and coupling) edges in G as equal.
Multi-attribute Graph Signals. Our next endeavor is to study the
multi-attribute graph signal on G, y : V → RL, where each node
is associated with L attributes, each associated with one layer-graph
in G. A natural way to represent the graph signal is to consider y as
a graph signal defined on the supranode set V , given by the vector
y = (y1(V)⊤ · · · yL(V)⊤)⊤ ∈ RNL.

The observed graph signal y is modeled as the output of a graph
filter that captures the interplay between the intra-layer graph and
coupling graph. The mth signal observation is modeled by

y(m) = H(AL,AC)x
(m) +w(m), (3)

where x(m) is an unknown excitation and w(m) models the obser-
vation noise. For simplicity, we assume that x(m) ∼ N (0, I),
w(m) ∼ N (0, σ2I) and the random variables (r.v.s) are indepen-
dently distributed. We model the multiplex graph filter H(AL,AC)
after the general product graph filter in [12–15, 23]:

H(AL,AC) =

T−1∑
t=0

2t−1∑
j=0

ht,j

t∏
i=1

A
b
(i)
t,j

L A
1−b

(i)
t,j

C , (4)

where b
(i)
t,j ∈ {0, 1}, i = 1, . . . , t is a binary sequence that encodes

the integer j ∈ {0, . . . , 2t − 1}, ht,j ∈ R is a filter coefficient,

and T ∈ N is the filter’s order (can be infinite). We have defined
A0 = INL for notation convenience.

To justify (4), we notice that the intra-layer and coupling graphs
may yield different dynamics models as their respective edges play
different roles in the multiplex graph. Eq. (4) is thus designed to
capturing such distinct dynamics. As a special case of (4), the bi-
variate filter H(AL,AC) =

∑T1
i=0

∑T2
j=0 hijAi

LAj
C gives a joint

filter where the intra-layer, coupling dynamics depends on {hij}T2
j=1,

{hij}T1
i=1, respectively. We further instantiate (3), (4) by:

Example 1. Consider an extension of multi-dimensional opinion dy-
namics with agent-independent logical matrices [7]. At time t ≥ 0
of the mth discussion, the evolution of multi-dimensional opinions
for ℓth agent is described by:

xℓ(t+ 1) = Aℓ

∑L
ℓ′=1 Cℓ,ℓ′xℓ′(t) + x

(m)
ℓ , (5)

where C ∈ RL×L encodes the mutual trusts between L agents and
Aℓ ∈ RN×N is the logical matrix between N topics, x(m) denotes
the initial beliefs. Stacking up xℓ(t) to be x(t) such that its ℓth
block represents the opinions held by the ℓth agent. These matrices
are properly scaled to ensure that the vector (INL − ALAC)1 is
positive. Our observation is given by the steady-state opinions:

y(m) = lim
t→∞

x(t) = (INL −ALAC)
−1x(m). (6)

Example 2. The supra-diffusion process [4] captures the dynam-
ics such as social interactions, epidemics, and transportation on
a graph composed of multiple interconnected layers. Specifically,
driven by the excitation x(m) = (x

(m)
1 , . . . ,x

(m)
L ), at layer ℓ, the

node states at time t evolve as:

dxℓ(t)

dt
= −xℓ(t) +Aℓxℓ(t) +

L∑
ℓ′=1

Cℓ,ℓ′xℓ′(t) + x
(m)
ℓ . (7)

This is a diffusion process defined on the supra-adjaceny matrix A.
With properly scaled AL, AC , (7) admits a unique equilibrium:

y(m) = (INL − (AL +AC))
−1x(m), (8)

Although (4) describes a flexible model that allows for different
dynamics between the intra-layer and coupling graphs, the model
lacks a spectral domain interpretation which is essential to graph
frequency analysis. One of the key issues lies with the fact that (4) is
non-symmetric, even when its component matrices A1, . . . ,AL,C
are. This limits our ability to analyze the multi-attribute graph sig-
nals in (3), and subsequently, develop an inference scheme.

3. MULTIPLEX GRAPH LEARNING

This section presents a method for learning the multiplex graph
G from samples of graph signals observed in (3), i.e., to estimate
AL,AC from M samples {y(m)}Mm=1. Our idea is to leverage
the smoothness of graph signals in the graph learning process. In-
spired by [24], we adopt a quadratic total variation (TV) criterion
(a.k.a. Dirichlet energy). However, we depart from the original inter-
pretation in [24] and re-consider the TV criterion as an approximate
matched filter objective for fitting low pass graph signals. Using
this interpretation, we derive a high-order smoothness criterion for
fitting the multi-attribute graph signals generated by strong coupling
dynamics across layers.

Our endeavor begins with the following TV criterion:

TV(AL,AC) :=
∑NL

i,j=1

[
ĥ(AL,AC)

]
ij
Sij , (9)
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where [A]ij denotes the (i, j)th entry of a matrix A,

Sij := (1/M)
∑M

m=1 |y
(m)
i − y

(m)
j |2, i, j = 1, . . . , NL. (10)

and ĥ : RNL×NL × RNL×NL → RNL×NL fuses the intra-layer
and coupling graphs whose form will be discussed later. Observe
that TV(AL,AC) is the inner product ⟨ĥ(AL,AC) |S⟩.

We note that TV measures the ‘smoothness’ of the observed
graph signals with respect to (w.r.t.) a fused simple graph with the
weighted adjacency matrix given by ĥ(AL,AC). To gain more in-
sights, we shall take a closer look at the signal model. The distance
matrix S can be written as

1Em[y(m)⊙y(m)]⊤+Em[y(m)⊙y(m)]1⊤−2Em[y(m)(y(m))⊤]

where ⊙ denotes element-wise product and the expectation Em[·] is
taken as the empirical mean over M samples. Recall that x(m) ∼
N (0, I) and assume that w(m) ≈ 0, M ≫ 1 yields

Em[y(m) ⊙ y(m)] ≈
(
· · · ∥e⊤

i H(AL,AC)∥2 · · · )⊤,

Em[y(m)(y(m))⊤] ≈ H(AL,AC)H(AL,AC)
⊤.

(11)

As ∥e⊤
i H(AL,AC)∥2 is approximately constant, the TV cri-

terion TV(AL,AC) can be minimized if the inner product
⟨ĥ(AL,AC) |H(AL,AC)H(AL,AC)

⊤⟩ is large. This suggests
that ĥ(·, ·) should be a matched multiplex graph filter.

To determine ĥ(·, ·), we consider the following (possibly non-
unique) decomposition for the multiplex graph filter (4):

H(AL,AC)H(AL,AC)
⊤ = (12)

H1(AL) +H2(AC) +H3(ALAC +ACAL) + H̃res(AL,AC)

where H̃res(·, ·) is the residual term. The graph filters H1(AL),
H2(AC) model the dynamics within and between the layer-graphs,
respectively. Meanwhile, the graph filter H3(ALAC + ACAL)
captures dynamics between two-hops neighbors in the multiplex
graph that couple the layer-graphs together, e.g., as seen in (6). The
modeling of such two-hops neighbors marks a significant difference
between the multiplex graph and a simple graph induced by the
supra-adjacency matrix (2). They represent cross-layer interactions
that emphasize the inter-layer coupling of multilayer graph. Fig. 1
illustrates the edges modeled by the corresponding GSOs.

Notice that the matrices AL,AC ,ACAL + ALAC are sym-
metric. Taking them as the GSOs of the respective graph filters, their
eigen decompositions admit a natural graph spectral interpretation.
To this end, we assume that

H1. For each i = 1, 2, 3, the graph filter Hi(A) :=
∑T−1

t=0 h
(i)
t At

is low pass at all graph frequencies [25]. That is, the scalar polyno-
mial function hi(λ) :=

∑T−1
t=0 h

(i)
t λt is non-decreasing in λ.

It can be verified that H1 holds for the respective decomposition of
the form (12) with the dynamics in Examples 1, 2.

Under H1 and suppose that the residual term H̃res(AL,AC) is
negligible, setting ĥ(·, ·) to be a linear mixture of the GSOs yields
an approximate matched graph filter to (12). We propose

ĥ(AL,AC) := AL +AC + λ(ACAL +ALAC), (13)

where λ ≥ 0 is a tunable parameter. Notice that other forms of ĥ(·, ·)
to match with H(AL,AC) are available. However, they may not
yield tractable objective function for the TV in (9), especially when
the exact forms of Hi(·) are unknown. Finally, substituting (13) into
(9) yields a high-order smoothness TV objective that captures the
two-hops inter-layer coupling in multiplex graph.

Fig. 1. Illustrating the intra-layer graph AL, coupling graph AC

and the two-hops cross-layer coupling graph ALAC +ACAL.

3.1. Alternating Optimization Algorithm

Equipped with the high-order smoothness TV criterion (9), (13), we
are ready to discuss the solution strategy for learning AL,AC . Our
focus is the following non-convex optimization problem:

min
C∈WL,

Aℓ∈WN,ℓ∈[L]

TV(AL,AC) + ρL
∑L

ℓ=1 ∥Aℓ∥2F + ρC∥C∥2F

s.t. AL = blkdiag(A1, . . . ,AL), AC = C ⊗ IN ,
(14)

where the structures of AL,AC are taken into account (cf. (1)),
ρL, ρC > 0 are regularization parameters, and the feasible set is:

WN := {A ∈ RN×N
+ : 1⊤A1 = N,A = A⊤, diag(A) = 0}.

(15)
The TV criterion can be written as

TV(AL,AC) = ⟨AL |S⟩+ ⟨AC |S⟩
+ λ⟨ALAC +ACAL |S⟩

(16)

where the first two terms are

⟨AL |S⟩ =
∑L

ℓ=1⟨Aℓ | cℓ(S)⟩, ⟨AC |S⟩ =
∑N

i=1⟨C | li(S)⟩

such that cℓ(S) takes the ℓth principal submatrix of S, and li(S) col-
lects the ith diagonal elements in each of the N ×N block matrices
in S, i.e., [li(S)]k,ℓ := [S](k−1)N+i,(ℓ−1)N+i, k, ℓ ∈ [L].

When λ = 0, i.e., without the last bilinear term in (16), problem
(14) can be solved independently for each of A1, . . . ,AL,C. In this
case, the TV criterion can be seen as an extension of the ‘stacked-
up’ formulation in [16] which takes only the layer-wise and node-
wise distances between graph signals. For instance, ⟨Aℓ | cℓ(S)⟩
fits the graph signal distances within the ℓ-th layer-graph Aℓ, which
does not account for influences from the node’s clones in other lay-
ers. This may be insufficient to expose the diverse coupling between
layer-graphs for multiplex networks.

In general, problem (14) is non-convex due to the bilinear term
in (16). As a remedy, we adopt a standard alternating optimization
(AO) approach. Observe that when we fix C = C, the AO subprob-
lem is separable such that for any ℓ ∈ [L], optimizing (14) w.r.t. Aℓ

yields the convex problem:

min
Aℓ∈WN

〈
Aℓ | cℓ

(
S + λ(ACS + SAC)

)〉
+ ρL∥Aℓ∥2F ,

with AC := C ⊗ IN and we recall that cℓ(·) is a linear transfor-
mation. Similarly, as we fix Aℓ = Aℓ for ℓ ∈ [L], optimizing (14)
w.r.t. C yields the convex problem:

min
C∈WL

N∑
i=1

〈
C | li

(
S + λ(ALS + SAL)

)〉
+ ρC∥C∥2F
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Algorithm 1 Alternating Optimization (AO) procedure for (14)

Input: Graph signals {y(m)}Mm=1, maximum iterations T0, param-
eters λ, ρL, ρC , initialization for the coupling graph C(0).

1: Compute the pairwise distance matrix S by (10).
2: for t = 0 to T0 − 1 do
3: Set P (t) = S + λ((C(t) ⊗ I)S + S(C(t) ⊗ I)) and solve

the subproblems for ℓ ∈ [L]:

A
(t+1)
ℓ ∈ argmin

Aℓ∈WN

⟨Al | cℓ(P (t))⟩+ ρL∥Aℓ∥2F .

4: Set Q(t+1) = S + λ(
⊕L

ℓ=1 A
(t+1)
ℓ S + S

⊕L
ℓ=1 A

(t+1)
ℓ )

and solve the subproblem:

C(t+1) ∈ argmin
C∈WL

∑N
i=1⟨C | li(Q(t+1)))⟩+ ρC∥C∥2F .

Note that
⊕

ℓ denotes the direct sum of matrices.
5: end for

Output: layer graphs A(T )
1 , . . . ,A

(T )
L , coupling graph C(T ).

with AL = blkdiag(A1, . . . ,AL). Notice that the above subprob-
lems are tractable as they only involve the optimization of N × N
and L× L symmetric matrices.

The AO procedure is summarized in Algorithm 1. It is known
that the procedure finds a stationary point of (14) [26] as T0 → ∞.

4. NUMERICAL EXPERIMENT

This section presents preliminary experiments on the proposed mul-
tiplex graph learning method using synthetic data. We aim to verify
if modeling the inter-layer coupling of dynamics between two-hops
neighbors is necessary for reliably learning the multiplex graph.

Throughout this section, we set the coupling graph GC to be
an L = 4-nodes graph with a star graph topology. The adjacency
matrix is given by C =

∑4
ℓ=2(eℓ−1(eℓ)

⊤ + eℓ(eℓ−1)
⊤), where

eℓ ∈ RL is the ℓth canonical basis vector. Meanwhile, for each ℓ ∈
[L], the intra-layer graph Gℓ is generated as Erdos-Renyi graph with
connection probability pℓ. For different layers, we have p1 = 0.2,
p2 = 0.3, p3 = 0.4, and p4 = 0.5, Correspondingly, for ℓ ∈ [L], Aℓ

is the unweighted adjacency matrix of the above intra-layer graph.
For the proposed algorithm, we set the regularization parameters

as ρL = 1, ρC = 15. Additionally, the maximum iteration for
Algorithm 1 is T0 = 100, and the procedure is terminated when
the changes in iterate satisfy max{∥A(t+1)

C − A(t)
C ∥F , ∥A(t+1)

L −
A(t)

L ∥F } ≤ 10−3. The convex sub-problems are solved using the
cvx package on MATLAB. As a benchmark, we consider solving
a special case of (14) with λ = 0. This formulation with λ = 0 is
a direct extension over [16]. We recall that it ignores the inter-layer
coupling term in (13) that allows to capture the inter-layer coupling
between the ‘two-hops’ neighbors in G.

The distance matrix S in (10) is computed from M synthetic
graph signals generated from (3). For each graph signal, we generate
x(m) ∼ N (0, I), w(m) ∼ N (0, 0.01I), and simulate the graph
filters that are modeled after Examples 1, 2:

• ‘Weak coupling’: Hwk(AL,AC) = (I − τwk(AL +AC))
−1.

• ‘Strong coupling’: Hstr(AL,AC) = (I − τstrALAC)
−1.

We also set τwk = 1/maxi d
wk
i , τstr = 1/maxi d

str
i with dwki =∑NL

j=1[AL + AC ]ij and dstri =
∑NL

j=1[ALAC ]ij . Note that the

102 103
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Fig. 2. Topology Reconstruction under weak coupling Hwk(·)
AUC performance against (Left) sample size M with N = 15;
(Right) graph size N with M = 1000.
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5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8
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1
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Fig. 3. Topology Reconstruction under strong coupling Hstr(·)
AUC performance against (Left) sample size M with N = 15;
(Right) graph size N with M = 1000.

case with Hwk(·), modeled after the supra-diffusion process, refers
to a situation when the inter-layer coupling is weak; while Hstr(·),
modeled after the multi-dimensional opinion dynamics, refers to the
case with strong inter-layer coupling. We measure the estimation
quality of the intra-layer graphs AL and coupling graph AC sepa-
rately. Lastly, we measure the expected area under ROC (AUC) from
100 Monte-Carlo trials in detecting if an edge exists in the respective
graph topologies.

In the first experiment shown in Fig. 2, we consider the case
of ‘weak coupling’ and compare the AUC performance against the
sample size (M ), the graph size (N ). We set λ = 0.1 for the pro-
posed algorithm. For the comparison against M on the left panel,
we fix N = 15 and observe that the AUC performance improves in
general as M increases. Meanwhile, for the comparison against N
on the right panel, we fix M = 1000 and observe that the AUC per-
formance deteriorates as N increases. Observe that the proposed AO
algorithm attains similar performance as the benchmark with λ = 0.

In the second experiment shown in Fig. 3, we consider the case
of ‘strong coupling’ and perform a similar comparison for the AUC
performance as in Fig. 2. We set λ = 5 for the proposed algorithm.
While similar trends are observed as N , M increases, we notice that
the benchmark with λ = 0 struggles to estimate the intra-layer and
inter-layer graph topologies in this scenario. On the other hand, the
AO approach continues to deliver reliable estimation over the range
of system configurations tested.
Conclusions. This paper focuses on learning multiplex network
from multi-attribute graph signals. We introduced a general mul-
tiplex graph filter model and devised a high-order smoothness met-
ric for learning the graph topologies with an emphasis on the inter-
layer coupling structure. An efficient AO procedure is developed
subsequently. Our result shows that in learning multiplex graphs,
the distinct dynamics of inter and intra-layer interactions can have
an important role, which should be handled properly.
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