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Graph Signal Processing

[Source: NETWORK MANAGEMENT]

▶ Graphs: Effectively depict data’s spatial layout in diverse fields
like social, biology, transportation, and power networks.

▶ GSP: A flexible tool that extends the concepts from classical
signal processing to graphs and makes inference from data.

▶ Network Data → Filtered Graph Signals
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Motivation

▶ Like LTI filters, graph filter can be classified as low pass, band
pass, or high pass through its graph frequency response.

▶ Low-pass graph signals capture a smoothing operation of input
graph signals, are prevalent in network data, e.g., social
network, financial network, power network, etc.1

1[Ramakrishna et al., 2020] R. Ramakrishna, H. -T. Wai, A. Scalgione. A user
guide to low-pass graph signal processing and its applications. SPM, 2020.
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Motivation

Low pass graph signals [Source: [Ramakrishna et al., 2020]]

▶ Many GSP algorithms rely on the low pass assumption.
E.g. sampling [Anis et al., 2016], graph topology learning
[Dong et al., 2016a], GNN [Wu et al., 2019], community detection
[Schaub et al., 2020], centrality estimation [He and Wai, 2022].
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Motivation

▶ Low pass assumption can be dangerous if graph signal
generating model is unknown or data is corrupted.

E.g. Topology inferred from non low pass signals can be deceptive

(a) Ground truth. (b) Topology learnt by GL-SigRep[Dong et al., 2016b] on non-low-pass signals.

Can we detect if the signals are low pass before using GSP tools?
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Related Works

▶ Blind identification of graph filters.
[Zhu et al., 2020, Segarra et al., 2016, Ye et al., 2018]

- Learn graph filter’s coefficients → validate low pass
→ Require Graph topology.

▶ Network inference from spectra template. [Segarra et al., 2017]

- Learn GSO without low pass assumption → validate low pass
→ High computational cost, learn possibly wrong GSO.
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Low Pass Graph Filter

GSO : S , Graph Filter : H(S) =
∞∑
ℓ=0

hℓSℓ, Freq. response : h(λ) =
∞∑
ℓ=0

hℓλ
ℓ,

where GSO = normalized Laplacian, with eigenvalues 0 = λ1 ≤ · · · ≤ λn.

Def. For 1 ≤ k ≤ n − 1, define

ηk :=
max{|h(λk+1)|, . . . , |h(λn)|}
min{|h(λ1)|, . . . , |h(λk)|}

.

If the low-pass ratio satisfies

ηk ∈ [0, 1), then H(S) is k-low-pass.

▶ Integer k characterizes the bandwidth, or the cut-off frequency.

▶ Let x be a white noise excitation, then k low pass graph signals

y = H(S)x , where H(S) is k-low pass.
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Detecting Low-pass Signals

▶ Challenges: graph topology S and filter H(S) are unknown.

▶ Warning: an ill posed problem – graph signals are low pass on
one graph, but non low pass on another.

▶ Many real networks tend to be modular.

Real Social Network [Source: [Weng et al., 2013]]

▶ Assume: no. of dense clusters, K , in the graph is known a-priori.
=⇒ λ1, . . . , λK ≈ 0 =⇒ if filter is low pass, it will be K low pass.
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Detecting Low-pass Signals

▶ Observation: graph signals from K low pass filter exhibit
particular spectral signature. E.g., SBM graph with K = 3
clusters,

vi , i ≤ K — piecewise constant-valued [Deng et al., 2021]

vi , i > K — ‘Gaussian’-valued (an open problem [Kadavankandy et al., 2015])
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Detecting Low-pass Signals

Our idea:

▶ Define Ĉm
y := (1/m)

∑m
ℓ=1 y

ℓ
(
yℓ
)⊤

, v̂i = i th-EV

▶ Detect if V̂K has piecewise constant columns =⇒ K -means:

K(V̂K ) = min
Si∩Sj=∅,i ̸=j

∑K
i=1

∑
ℓ∈Si

∥∥∥v̂ℓ − 1
|Si |
∑

j∈Si
v̂j
∥∥∥2 ≶ δ.
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Sampling Complexity Analysis

With high probability and assumption K(vℓ) ≥ cSBM > 0,
ℓ = K + 1, . . . ,N, if graph signals are K low pass,

K(V̂K ) ≤
16K

∆2

(
2c1

√
logM

M
tr(Cy ) + σ2

)2

+
2450K 3 logN

p(N − K )

if graph signals are not K low pass,

K(V̂K ) ≥

(
√
cSBM − 23/2

√
K

∆
2c1

√
logM

M
tr(Cy ) + σ2

)2

.

With large sample size M and graph size N, our method can provide
correct detection.
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Experiment

▶ Our blind detection outperforms SpecTemp[Segarra et al., 2017]
with less computational complexity and sampling complexity.

▶ Our performance improves (AUROC → 1) as M, N increase.
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Application: Robustifying Graph Learning.

Problem: Learning graph topology with corrupted/non low pass
data is challenging2.
Approach: Pre-screened graph learning procedure

1. Apply low pass detection algorithm on signal batches.

2. Remove batches with non low pass/corrupted signals.

3. Apply graph learning method on the remaining signals.

(a) original dataset (b) corrupted dataset (c) dataset after pre-screening.

2Corruption data types include missing data, outliers, uncertainty, etc.
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Application: Robustifying Graph Learning.

Pre-screening procedure can robustify graph learning against outliers,
missing data, uncertainty corruption.
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Application: Detecting Antagonistic Opinion Dynamics

V = individuals, E+ = friends/trust, E− = unfriend/distrust

▶ Observed steady state :

ym := lim
τ→∞

ym(τ) = (1− α)(I − αAE+ − αAE−)−1Bzm
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Application: Detecting Antagonistic Opinion Dynamics

▶ ‘signed’ are negative edges in the real graph;‘unsigned’ means all
edges being positive.

▶ Antagonistic/consensus behaviour are detected as distrust/trust
α increase.
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Application: Detecting Antagonistic Opinion Dynamics

▶ Senate dataset M = 949 votes by N = 97 members K = 2.

▶ Clustering into 4 groups based on vote questions.

▶ Antagonistic are more obvious in ”Nomination” votes;
while consensus are observed in ”Amendment” votes.
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Summary

▶ Propose blind detection method for low pass graph signals.

▶ Provide sampling complexity analysis for proposed algorithm.

▶ Applications and experiments for informing downstream tasks.
- Robustify graph learning.

▶ Application and experiment in network dynamics identification.
- Antagonistic relationship in social networks.
- FDIA detection in power systems.
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Thank you!

Any questions or comments are welcomed!
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